Non abelian tensor products of groups and related constructions, and applications
Last updated, September 22, 2015
Some remarks on history
The earliest paper which uses a version of the nonabelian tensor square, and so
a replacement of the commutatot map by a morphism, is surely
[1] by Claire Miller. The next publication [2] defined a tensor product for a crossed module, and Abe Lue was annoyed he had not thought
of the more symmetric definition given in [5-6].
It should be emphasised that a start for the work with Loday was a seminar I gave in Strasbourg in 1981 on the joint work with Philip Higgins;
Jean-Louis immediately saw its relevance. Indeed, he had a conjecture which I saw as a triadic Hurewicz Theorem. But Higgins and I had deduced
the Relative Hurewicz Theorem from a van Kampen type theorem. So we conjectured a van Kampen type theorem
for his n-cat-groups. In 1982 it was realised that such a theorem would give rise to applications of a nonabelian tensor product, and this was part of papers
[5-7]. This work was improved with the input of the preprints [3-4]. The problem of calculation arose out of writing the paper [6], once we had seen that the tensor square of finite groups was finite.
Calculations for dihedral and quaternionic groups appeared in [6], and the general problem of calculation was put to David Johnson, leading to the publication [8].
A seminar I gave in Binghampton attracted the interest of L.-C. Kappe, and much work from her group.
Graham Ellis was a PhD student at Bangor, 1984-7, hence his interest in this area.
This version has been revised to be in chronological order, at least in terms
of years, in order to show better the development of the area.
Among `related constructions' we include non abelian tensor products of other
algebraic structures (see [17]), such as Lie algebras, since these were motivated
by the construction for groups. Also included (see [21,74]) is the Peiffer
product of groups which act on each other.
Suggestions for further entries or other comments are welcomed. See also
the survey by L.-C. Kappe, listed as [68].
On my preprint page is a link to presentation
on this topic for a Colloquium in Goettingen, May 5, 2011. See also on trhe same page a presentation in June 2015 at CT2015 on "A philosophy of modelling and computing homotopy types".
Miller, Clair, `The second homology of a group', Proc. American Math.
Soc. 3 (1952) 588-595.
A. S.-T. Lue, `The Ganea map for nilpotent groups', J. London Math.
Soc. 14 (1976) 309-312.
R.K. Dennis, `In search of new "Homology" functors having a close
relationship to K-theory', preprint Cornell, 1976. (pdf file).
R.K. Dennis, `Addendum to "In search of new "Homology" functors having a close
relationship to K-theory"', handwritten preprint Cornell. (pdf file).
R.Brown, J.-L.Loday, `Excision homotopique en basse dimension', C.R. Acad.
Sci. Ser. I. Math. Paris, 298 (1984) 353-356.
R.Brown, J.-L.Loday, `Van Kampen theorems for diagrams of spaces', Topology,
26, 311-335, 1987.
R.Brown, J.-L.Loday, `Homotopical excision, and Hurewicz theorems, for $n$-cubes
of spaces', Proc. London Math.Soc.(3) 54 (1987) 176-192.
R.Brown, D.L.Johnson, E.F.Robertson, `Some computations of non-abelian tensor
products of groups', J. Algebra, 111, 177-202, 1987.
G.J. Ellis, `The non-abelian tensor
product of finite groups is finite', J. Algebra, 111, 203-205, 1987.
G.J. Ellis, `Non-Abelian exterior products of groups and exact sequences
in the homology of groups', Glasgow Math. J., 29, 13-19, 1987.
G.J. Ellis, `Non-Abelian exterior products of Lie algebras and an exact sequence
in the homology of Lie algebras', J. Pure Appl. Algebra, 46, 111-115, 1987.
R.Aboughazi, `Produit tensoriel du groupe d'Heisenberg', Bull. Soc. Math.
France, 15, 95-106, 1987.
N.D.Gilbert, `The non-Abelian tensor square of a free product of groups',
Arch. Math., 48, 369-375, 1987.
N. Rocco, `Non abelian
tensor products under Engelian actions:an approach via a related construction',
Preprint, University of Brasilia, 1987.
D.L.Johnson, `The non-Abelian square of a finite split metacyclic group',
Proc. Edinburgh Math. Soc., 30, 91-95, 1987.
G.J. Ellis, `Multirelative algebraic $K$-theory: the group $K_{2}(\Lambda
,I_{1},\ldots ,I_{n})$ and related computations', J. Algebra, {\bf 112} (1988),
271-289. correction
G.J. Ellis, `An eight term exact sequence in algebraic $K$-theory', {\it
Bull. Lond. Math. Soc.} {\bf 20} (1988), 245-247.
G.J. Ellis, `Higher dimensional crossed modules of algebras', {\it J. Pure
Appl. Algebra} {\bf 52} (1988), 277-282.
D. Guin, `Cohomologie et homologie non-abeliennes des groupes', J. Pure
Applied Algebra, 50 (1988) 109-137.
R.Brown, `Triadic Van Kampen theorems and Hurewicz theorems', Proc. Int.
Conf. Algebraic Topology, Evanston, 1988 ed. M.Mahowald, Cont. Math. 96,
113-134, 1989. pdf
G.J.Ellis and C. Rodriguez-Fernandez, `An exterior product for the homology
of groups modulo $q$', Cah. Top. Géom. Diff. Cat. 30, 339-343, 1989.
N.D.Gilbert, P.J.Higgins, `The non-Abelian tensor product of groups and related
constructions', Glasgow Math. J., 31, 17-29, 1989.
D.L.Johnson, `Noncancellation and nonabelian tensor squares', Group theory
(Singapore, 1987), 405--408, de Gruyter, Berlin-New York, 1989.
G.J. Ellis, `Relative derived functors and the homology of groups', { Cahiers
Top. G\'eom. Diff. Cat\'eg.} {\bf 31} 2 (1990), 121-135.
T. Hannebauer, `On non-abelian tensor squares of linear groups', Arch. Math.
55 (1990) 30-34.
N. Rocco, `On a Construction Related to the nonabelian Tensor Square of a
Group', Bol. Soc. Bras. Mat., 22 (1991), 63-79.
R.Brown, `$q$-perfect groups and universal $q$-central extensions', Publicacions
Mat. 34, 291-297, 1991.
R.Brown, `Computing homotopy types using crossed $n$-cubes of groups', Proc.
Adams Memorial Symposium on Algebraic Topology, Manchester 1990, Volume I,
ed N.Ray and G. Walker, London Math. Soc. Lecture Note Series 175, Cambridge
University Press, 187-210, 1991.
C.Rodr\'iguez-Fern\'andez and E.G.Rodeja-Fernandez, The exact sequence in
the homology of groups with integral coefficients modulo $q$, associated
to two normal subgroups, Proceedings I.C.T.M.'89, Cahiers Topologie Géom.
Différentielle Catégoriques XXXII (1991), 113-129.
Baues, Hans Joachim; Conduché, Daniel, `On the tensor algebra of a
nonabelian group and applications', $K$-Theory 5 (1991/92), no. 6, 531-554.
D. Conduché and C. Rodriguez-Fernandez, Non-abelian tensor and exterior
products modulo $q$ and universal $q$-central relative extension, J. Pure
Applied Algebra, {\bf 78} (1992), 139-160.
G.J.Ellis, T.Hurley, F.Leonard, `Some computations of the non-abelian tensor
product', 7pp, Galway Preliminary Report, 1992.
M.R.Bacon, L.-C. Kappe, `The non-abelian square of a 2-generator $p$-group
of class 2', Arch. Math., 61 (1993) 508-516.
G.J. Ellis, `Crossed squares and combinatorial homotopy', Math. Z. 214 (1993)
93-110.
N. Rocco, `A crossed embedding of groups and the computation of certain
invariants of finite solvable groups', Matematica Contemporanea, vol.7,
part II (1994) 19-24.
M.R.Bacon, `On the non-abelian square of a nilpotent group of class 2', Glasgow
Math. J. 36 (1994) 291-297.
N. Rocco, `A presentation for a crossed embedding of finite solvable groups',
Comm. in Alg., 22 (1994) 1975-1998.
N.Inassaridze, `Non-abelian Homology of Groups', Bull. Georgian Acad. Sci.,
150, No 1, 13-17, 1994.
D. Guin, `Cohomologie des algebres de Lie croissees et K-theorie de
Milnor additif', Ann. Inst. Fourier Grenoble, 45 (1995) 93-118.
A.J.Duncan, G.J.Ellis,
N.D.Gilbert, `A Mayer-Vietoris
sequence in group homology and the decomposition of relation modules', Glasgow
Math. J. 37 (1995) 159-171.
G.J. Ellis, `Tensor products and q-crossed modules', J. London Math.
Soc., (2) 51 (1995) 243-258.
G.J.Ellis, F.Leonard, `Computing Schur multipliers and tensor products of
finite groups', Proc. Royal Irish Acad., 95A (1995) 137-147.
M. Hartl, `The non-abelian tensor square for groups of class 2', J. Algebra,
179 (1996) 416-440.
N.Inassaridze, `Non-abelian Tensor Products and Non-abelian Homology of Groups',
J. Pure Applied Algebra, 112, 191-205, 1996.
N.Inassaridze, `Finiteness of Non-abelian Tensor Product of groups', Theory
and Applications of categories, Vol. 2, No 5, 55-61, 1996.
N.Inassaridze, `Non-abelian Tensor Products of Finite Groups with Non-compatible
Actions', Bull. Georgian Acad. Sci.,154, No 1, 25-27, 1996.
G.J. Ellis, `On the tensor square of a prime power group', {\it Arch. Math.}
Vol. {\bf 66} (1996), 467-469.
M.R. Bacon, L.-C. Kappe,
R.F. Morse, `On
the nonabelian tensor square of 2-Engel groups', Archiv der Mathematik 69
(1997) 353-364.
N.Inassaridze, `Non-abelian Tensor Products of Precrossed Modules', Bull.
Georgian Acad. Sci., 155, No 3, 1997.
H.Inassaridze, `Non-abelian cohomology with coefficients in crossed bimodules',
Georgian Mathematical Journal Vol.4, No.6, 509-922, 1997.
H.Inassaridze, `Non-abelian cohomology of groups', Georgian Mathematical
Journal Vol.4, No.4, 313-332, 1997.
A. McDermott, The non abelian tensor product of groups: Computations and
structural results, PhD Dissertation, National University of Ireland,
Galway, 1998.
G.J. Ellis, `The Schur multiplier of a pair of groups', {\it Appl. Categ.
Structures}, 6 (1998), 355--371.
G.J. Ellis, `A bound for the derived and Frattini subgroups of a prime-power
group', {\it Proc. Amer. Math. Soc.}, 126 (1998), 2513-2523.
N.Inassaridze, `Relationship of non-abelian tensor products and non-abelian
homology of groups with Whitehead's gamma functor', Proceedings of A.Razmadze
Mathematical Institute 117, 31-51, 1998.
G.J. Ellis, `On the Schur multiplier of a quotient of a direct product of
groups', {\it Bull. Australian Math. Soc.} 58 (1998), 495-499.
H.Inassaridze and N.Inassaridze, `The Second and the Third Non-abelian Homology
of Groups', Bull. Georgian Acad. Sci., 1998.
G.J. Ellis, `On the computation of certain homotopical functors', {\it LMS
Journal of Computation and Mathematics} 1 (1998) 25-41.
H.Inassaridze and N.Inassaridze, `New descriptions of the non-abelian homology
of groups', Bull. Georgian Acad. Sci., 157, No 2, 196-200, 1998.
G.J.Ellis and A.McDermott, `Tensor products of prime-power groups ',
{\it J. Pure Appl. Algebra}, 132 (1998) 119-128.
E.Khmaladze, `Non-abelian tensor product of Lie algebras modulo q', Bull.
Georgian Acad. Sci., 1998.
Visscher, Matthew Peter; On the nonabelian tensor product of groups. Thesis
(Ph.D.)–State University of New York at Binghamton. 1998. 90 pp.
M.P Visscher, `On the nilpotency class and solvability length of non
abelian tensor products of groups', Arch. Math. 73 (1999) 161-171.
Gnedbaye, Allahtan V. A non-abelian tensor product of Leibniz algebras. Ann.
Inst. Fourier (Grenoble) 49 (1999), no. 4, 1149-1177.
Casas, J. M. `Universal central extension and the second invariant of homology
of crossed modules in Lie algebras', Comm. Algebra 27 (1999), no. 8, 3811--3821.
H.Inassaridze and N.Inassaridze, `Non-abelian homology of groups', K-Theory,
18 (1999) 1-17.
E.Khmaladze, `Non-abelian tensor and exterior products of Lie algebras modulo
q and related constructions', Bull. Georgian Acad. Sci., 1999.
L.-C.Kappe, ` Non abelian tensor products of groups: the commutator
connection' , Proceedings Groups St Andrews at Bath 1997, Lecture Notes LMS
261 (1999) 447-454. pdf
L.-C. Kappe, N. Sarmin and M.P Visscher, `Two generator two-groups of
class two and their non abelian tensor squares', Glasgow Math. J. 41
(1999) 417-430.
E.Khmaladze, `Non-abelian tensor and exterior products modulo q and
universal q-central relative extensions of Lie algebras', Homology,
Homotopy and Applications, 1 (1999) 187-204.
J.R. Beuerle and L.-C. Kappe, `Infinite metacyclic groups and their non abelian
tensor squares', Proc. Edinburgh Math Soc. 43 (2000) 651-662.
A. Mutlu and T.Porter, `Freeness conditions for crossed squares and squared
complexes', Special issues dedicated to Daniel Quillen on the occasion of
his sixtieth birthday, Part IV. $K$-Theory 20 (2000), 345-368.
N.Inassaridze and E.Khmaladze, More about homological properties of precrossed
modules, Homology, Homotopy and Applications 2 (2000) 105-114.
I.N. Nakaoka, `Non abelian tensor products of solvable groups', J. Group
Theory 3 (2000) 157--167.
W.A. Bogley and N.D. Gilbert, `The homology of Peiffer productes of groups',
New York J. Math. 6 (2000) 55-71.
R. Kurdiani, "Nonabelian tensor product of restricted Lie algebras" Bull.
Georgian Acad. Sci. 164 (2001), no. 1, 32-34.
Inassaridze, Nick, On nonabelian tensor product modulo $q$ of groups. Comm.
Algebra 29 (2001), no. 6, 2657-2687.
Ellis, Graham,
On the relation between upper central quotients and lower central series of a group.
Trans. Amer. Math. Soc. 353 (2001), no. 10, 4219-4234.
E.Khmaladze, `Homology of Lie algebras with $\Lambda/q\Lambda$ coefficients
and exact sequences', Theory and Applications of Categories,
10
(2002) 113-126.
R. Kurdiani and T. Pirashvili, `A Liebniz algebra structure on the second
tensor power', J. Lie Theory, 12 (2002) 583-596.
N.Inassaridze, E.Khmaladze and M.Ladra, Non-abelian tensor product of Lie
algebras and its derived functors, Extracta Mathematicae 17 (2002)
281-288.
N. H. Sarmin, `Infinite two-generator groups of class two and their non abelian
tensor squares', International Journal of Mathematics and Mathematical Sciences,
32 (2002) 615-625.
A. R. Grandjeán and M. P. López ,
`H_{2}^{q}(T,G,\partial) and q-perfect Crossed Modules',
Applied Categorical Structures 11 (2) (2003) 171-184.
Biddle, David P., and Kappe, Luise-Charlotte, On subgroups related to the
tensor center. Glasg. Math. J. 45 (2003), no. 2, 323–332.
E. Neher, `An introduction to universal central extensions of Lie superalgebras',
in Groups, rings, Lie and Hopf algebras (St. John's, NF, 2001, 141-166,
(St. John's, NF, 2001), Math. Appl., 555, Kluwer Acad, Publ, Dordrecht, 2003.
D. Arias, M. Ladra, and A. R.-Grandjeán , `Universal central extensions
of precrossed modules and Milnor's relative K2', Journal of Pure and Applied
Algebra 184 (2003) 139-154.
Redden, Joanne Lynn; The nonabelian tensor square of the free 2-Engel group
of rank n. Thesis (Ph.D.)–Saint Louis University. 2003. 163 pp.
Bacon, Michael R.; Kappe, Luise-Charlotte, On capable p-groups of nilpotency
class two. Special issue in honor of Reinhold Baer (1902–1979). Illinois
J. Math. 47 (2003), no. 1-2, 49–62.
D. Conduché, H. Inassaridze and N. Inassaridze, `Mod q cohomology
and Tate-Vogel cohomology of groups', Journal of Pure and Applied Algebra
189 (2004) 61-87.
N.Inassaridze, E.Khmaladze and M.Ladra, Non-abelian homology of Lie algebras,
Glasgow Math. J. 46 (2004), 417-429.
G.Donadze, N.Inassaridze, and T.Porter, n-Fold Cech derived functors
and generalised Hopf type formulas, K-theory Preprint Archives:
http://www.math.uiuc.edu/
K-theory/0624/
Russell D. Blyth, Robert F. Morse, Joanne L. Redden, `On computing the
non-abelian square of the free 2-Engel groups', Proceedings of the Edinburgh
Mathematical Society, 47 (2004) 305-323.
G. Guerard, `Produit tensoriel non abeliens, relations entre commutateurs
et homologie des groupes', These doctorale, Universite de Rennes, May, 2005.
Muro, Fernando Suspensions of crossed and quadratic complexes, co-$H$-structures
and applications. Trans. Amer. Math. Soc. 357 (2005), no. 9, 3623-3653
Moravec, Primož On nonabelian tensor analogues of 2-Engel conditions.
Glasg. Math. J. 47 (2005), no. 1, 77-86.
Donadze, Guram; Inassaridze, Nick; Porter, Timothy $N$-fold Cech derived
functors and generalised Hopf type formulas. $K$-Theory 35 (2005), no. 3-4,
341-373 (2006).
Bak, A.; Donadze, G.; Inassaridze, N.; Ladra, M. Homology of multiplicative
Lie rings. J. Pure Appl. Algebra 208 (2007), no. 2, 761-777.
Moravec, Primož The non-abelian tensor product of polycyclic groups
is polycyclic. J. Group Theory 10 (2007), no. 6, 795-798.
Donadze, G.; Ladra, M. More on five commutator identities. arx:0703633.
Baues, H.-J.; Jibladze, M.; Pirashvili, T. Quadratic algebra of square groups.
Adv. Math. 217 (2008), no. 3, 1236-1300.
Moravec, P., `The exponents of nonabelian tensor products of groups',
J. Pure Appl. Algebra 212 (2008), no. 7, 1840-1848.
Eick, Bettina; Nickel, Werner Computing the Schur multiplicator and the
nonabelian tensor square of a polycyclic group. J. Algebra 320 (2008), no.
2, 927--944
Moghaddam, Mohammad Reza R.; Salemkar, Ali Reza; Karimi, Taghi Some inequalities
for the order of the Schur multiplier of a pair of groups. Comm. Algebra
36 (2008), no. 7, 2481-2486.
Blyth, Russell D.; Moravec, Primo; Morse, Robert Fitzgerald On the
nonabelian tensor squares of free nilpotent groups of finite rank. Computational
group theory and the theory of groups, 27-43, Contemp. Math., 470, Amer.
Math. Soc., Providence, RI, 2008.
Eick, Bettina, Nickel, Werner, `Computing the Schur multiplicator and the nonabelian
tensor square of a polycyclic group', J. Algebra 320 (2008), no. 2, 927-944.
R. Brown and R. Sivera, `Algebraic colimit calculations in homotopy theory
using fibred and cofibred categories', Theory and Applications of
Categories, 22 (2009) 222-251.
Blyth, Russell D.; Morse, Robert Fitzgerald, Computing the nonabelian tensor
squares of polycyclic groups. J. Algebra 321 (2009), no. 8, 2139–2148.
Moravec, Primo, Groups of prime power order and their nonabelian tensor
squares. Israel J. Math. 174 (2009), 19-28.
Nakaoka, Irene N.; Rocco, Nora; R. A note on semidirect products and
nonabelian tensor products of groups. Algebra Discrete Math. 2009, no. 3,
77-84.
S. H. Jafari, P. Niroomand, A. Erfanian, The Non-Abelian Tensor Square and
Schur multiplier of Groups of Orders p^{2}q, pq^{2} and p^{2}qr, arXiv:0912.4000v1
[math.GR].
Moravec, Primo, Powerful actions and non-abelian tensor products of
powerful p-groups. J. Group Theory 13 (2010), no. 3, 417-427 .
R. Blyth, F. Fumagalli and M. Morigi, Some structural results on
the non-abelian tensor square of groups, J. Group Theory 13 (2010),
83–94.
Russo, Francesco, Nonabelian tensor product of soluble minimax groups.
Computational group theory and the theory of groups, II, 179-183, Contemp.
Math., 511, Amer. Math. Soc., Providence, RI, 2010.
Thomas, V.Z., `The nonabelian tensor product of finite groups is finite:
a homology free proof', Glasgow J. Mathematics, 52 (2010), no. 3, 473-477.
Ellis, G.J., About HAP: Third Homotopy Groups Of Suspensions Of Classifying
Spaces:
http://hamilton.nuigalway.ie/Hap/www/SideLinks/About/aboutTensorSquare.html
Thomas, Viji Z.; The box-tensor product: A generalization of the nonabelian tensor product.
Thesis (Ph.D.) State University of New York at Binghamton. 2010. 68 pp.
Rashid, S.; Sarmin, N. H.; Erfanian, A.; Mohd Ali, N. M. On the nonabelian tensor square and capability of groups of order p^{2}q
Arch. Math. (Basel) 97 (2011), no. 4, 299-06.
Moravec, P., On the Schur multipliers of finite p-groups of given coclass. Israel J. Math. 185 (2011), 189-205.
Ahmad Erfanian, Francesco G. Russo, Nor Haniza Sarmin, Some considerations on the nonabelian tensor square of crystallographic groups,
Asian European J. Math. (2011), 271 - 282 . arXiv:0911.5604
Bueno, Ticianne P.; Rocco, N. R. On the q-tensor square of a group. J. Group Theory 14 (2011), no. 5, 785-805.
Dietrich, Heiko; Moravec, Primoz, On the autocommutator subgroup and absolute centre of a group. J. Algebra 341 (2011), 150-157.
Francesco G. Russo
A note on the invariance in the nonabelian tensor product arXiv:1007.1323 4p.
Manuel Ladra, Viji Z. Thomas ,
Two generalizations of the nonabelian tensor product, J. Algebra 369 (2012), 96-113 . arXiv:1106.2136 19p.
Parvizi, Mohsen; Niroomand, Peyman On the structure of groups whose exterior or tensor square is a p-group. J. Algebra 352 (2012), 347-353.
Jafari, S. H. A bound on the order of non-abelian tensor square of a prime-power group. Comm. Algebra 40 (2012), no. 2, 528-530.
Moghaddam, Mohammad Reza R.; Niroomand, Peyman. Some properties of certain subgroups of tensor squares of p-groups. Comm. Algebra
40 (2012), no. 3, 1188-1193.
Otera, Daniele Ettore; Russo, Francesco G.; Tanasi, Corrado. Some algebraic and topological properties of the nonabelian tensor product.
Bull. Korean Math. Soc. 50 (2013), no. 4, 1069-1077.
Rashid, S.; Sarmin, N. H.; Erfanian, A.; Ali, N. M. Mohd; Zainal, R. On the nonabelian tensor square and capability of groups of order 8q.
Indag. Math. (N.S.) 24 (2013), no. 3, 581-588.
S. H. Jafari, F. Saeedi, and E. Khamseh. "Characterisation of finite p-groups by their nonabelian tensor square". Comm. Algebra, 41: (2013) 1954-1963.
Andreas Distler and Bettina Eick, "Group extensions with special properties", arxiv:1404.4208, 13p.
B.C.Rodrigues Lima, R. N. de Oliveira, "Weak Commutativity Between Two Isomorphic Polycyclic Groups", arxiv: 1409.5511, 9p.
P. Niroomand, M. Parvizi, F.G. Russo , "Decomposition of the nonabelian tensor product of Lie algebras via the diagonal ideal", arXiv:1502.00417, 10p.
R. Brown, "A philosophy of modelling and computing homotopy types", 19 pages. Presentation CT2015, Aveiro, Portugal. pdf of slides
A. Antony, G. Donadze, V. Prasad, V.Z. Thomas, "On the second stable homotopy group of the
Eilenberg-Maclane space and the Schur Multiplier", arXiv:1508.04404.
R. Bastos and N.R. Rocco, "Nonabelian tensor square of finite-by-nilpotent groups", arXiv:submit/1354153 17 Sept, 2015