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Topologieal groupoids: II. Covering morphisms and G-spaces
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J.P. L. Harpy (Bangor)
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§ 1. Introduction

The theory of covering groupoids plays an important role in the applications
of groupoids (cf. [11]), and in this theory there are two key results. One is that
if @ is a groupoid there is an equivalence between the category Op (&) of operations.
of @ on sets (or G-sets as they are called) and the category Eov/G of covering
groupoids of G. (This result seems to have been stated first in this form in [9],
although the constructions involved had been used previously.) The other is
that if @ is a transitive groupoid!), there is a bijection between the equivalence
classes of transitive covering groupoids of G and the conjugacy classes of sub-
groups of . (This result is an abstract formulation of known results on covering
spaces and the fundamental group—it is due to Hiceins [11], page 110.)

The object of this paper is to prove topological versions of these results.

For the first result there is no problem. We define the category J €ov/G of
topological covering morphisms of the topological groupoid ¢'; we follow EHRES-
MANN [7] in defining the category J Op (G) of G-spaces; and we prove the equi-
valence of these categories. This allows us to give a number of useful examples in
these categories.

The second problem presents difficulties which are related to the fact that a
transitive G-space need not be a homogeneous space of ¢. However we present a
corresponding result for the locally trivial case.

In general this paper is independent of [5]; however, we will not repeat any
of the results which appear there. 4

Some of the results of this paper appeared in [6] and [10]. During part of
this research the second author was supported by an S.R.C. Research Grant
B/RG/2574, and the third author was supported by an 8. R. C. Research Student-
ship. )

§ 2. General Case A

Recall that a morphism ¢: H—~G of groupoids is a covering morphism if for
each y<cOb (H), the restriction of ¢ mapping Styy—St,gy is a bijection. Let

1) Transitive groupoids are also called connected groupoids in the literature.
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GXO0b (H) be given by the pullback diagram of sets.

GXO0b (H) ——— 0b (H)
| [0 @
G ‘6,—) Ob (&)

If g: H ~@ is a covering morphism, we have a lifting function §,:GXO0b(H)~H
assigning to the pair (g, y) the unique element % of Sty such that ¢(h)=g; clearly
s, is inverse to (¢, ¢'): H—~GXO0b (H). So we can state: ¢: H~G is a covering
morphism if and only if (g, &"): H—~GX Ob (H) is a bijection. It is in terms of this
function (g, &) that the notion of topological covering morphism is most con-
veniently phrased.

Definition. A 7 &-morphism ¢: H ~@ of topological groupoids is a topological
covering morphism if the function (g, &): H-~@XOb (H) is a homeomorphism.
In such a case the inverse to (g, &) is written s, and called the lifting function.

Notice that the identity ¢ —@ is a topological covering morphism. Also the
composite of topological covering morphisms is again a topological covering
morphism—this is one part of the following proposition

Proposition 1. Suppose given o commutative diagram of morphisms of topological
groupoids

H L -t

wn which ¢ is a topological covering morphism. Then p is a topological covering
morphism if and only if r is a topological covering morplism.

The proof is given in § 4.

Let 7 §/G be the category of topological groupoids over G; the full subcategory
of this on the topological covering morphisms is written 7 €ov/G. By Proposition 1,
the morphisms of this category are topological covering morphisms.

The basic examples of topological covering morphisms come from the relation
between these and G-spaces, whose definition is due to EHRESMANN [7].

Definition. A (left) G-space is a triple (S; p, ¢) where S is a topological space,
p:8-0b (&) is a continuous function, and ¢: GX 8 -8, (a,s)— a - s, isa continuous
action with G X8 given by the pull-back diagram

GXS —8

Ll

G ———Ob (@
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The action ¢ must satisfy the usual axioms

(1) pla - 5) =da
(2) b (a-s)=(ba) - s
(3) 1,98 =S

whenever these expressions are defined.

By an abuse of language, we also say that S is a (left) G-space via p.

A morphism of (left) G-spaces (S, p, ¢)—~(8", p", ¢’) consists of a continuous
function f: § —~8’ such that p’f=p and f(a - s)=a - f(s) whenever a - s is defined. So
we have a category J Op (G) of G-spaces.

Theorem 2. The categories J Eov/G and T Op (G) are equivalent.

Proof. We define functors I': 7 ov/G —~T Op (@), @: T Op (G)~T Eov/G and
natural equivalences ['@=1, ®I'=1.

Let ¢: H—~G be a topological covering morphism, and let s,: ¢ XOb (H)~H
be the continuous inverse of (g, &). Let ¢ =2as,: GXOb (H)~O0b (H). Then ¢ is
continuous and it is clear that I'(g)=(Ob (H); Ob (), ¢) is a G-space. A map of
covering morphisms induces a morphism of G-spaces, so we have a functor as
required.

Now let (S; p; @) be a (left) G-space. Then we make G X8 into a topological
groupoid with object space S as follows. The initial and final maps are defined by
&(a, s)=s, da, s)=a-s; (b, 1), (a,8))=(b - a, s); u(s)= (L, 5); o(a, s)=(a"L4 a-s).
The verification that GXS is a topological groupoid is straight forward. The
projection q: GX 8 ~G is a J §-morphism and it is clearly a topological covering
morphism since (g, &): G X8 —~ GX S is the identity. Once again we have a functor
@ as required.

Clearly I'®=1. The natural equivalence @I'=1 is given by the fact that if
q: H—~@ is a topological covering morphism, then s,: GXO0b (H)—H is an iso-
morphism of topological groupoids.

Remark. Tt is clear from the above proof that there is a general result. Let €
be an arbitrary category with pull-backs, and let G be a groupoid object in &.
A covering groupoid of @ is a morphism ¢: H —~@ of groupoid objects in & such that
(¢, &): H~GXO0b (H) is an isomorphism in £. Then the categories £-0p (G) and
&-8ov/G are equivalent. '

We can now give examples of coverings and G-spaces by giving either first,
and can also translate concepts from one category into the other.

Example 1. If G is a topological groupoid, then Ob (G) is a left G-space via
the identity, the action being given by a-z=y for z€Ob (&) and ac@(z, y). Note
that this action derives from the identity covering morphism 1: G ~G.

If (S; p, ) is a G-space, then the orbiis of S are the equivalence classes under
the equivalence relation s~ if and only if {=a - s for some @ in G. These orbits
can be identified with the (abstract) components of the groupoid GXS defined
10 Math, Nachr. Bd. 74
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in the proof of Theorem 2. In particular, G operates transitively on S (i.e. S has
only one orbit) if and only if the groupoid @ XS is transitive.

The set of orbits of S under this (left) action of @ is written G\S, and this set
is given the identification topology with respect to the projection §—~G\S. How-
ever, unlike in the case of groups, this projection: need not be an open map.

Example 2. Let f: S—7 be an identification map which is not an open map.
Define a topological groupoid & by Ob (@)=8, and G(s, s) = if f(s)= f(s), and
otherwise G(s, s")={(s, s)}; thus G has its topology as a subset of Sx.S. The unique
composition in G which makes it a groupoid also makes it a topological groupoid.
Then S, the object space of @, is a left G-space, and the orbit space G\S may be
identified with 7. So in this case S —~G\S is not open.

Ii (8; p, ¢) is a G-space, and s€ S, then the stability group (or isotropy group)
of s is G,={a€G: a-s=s}. Clearly the covering morphism ¢: G XS —~G maps the
object group (GX8) {s} isomorphically to Q..

A topological covering morphism ¢: H -G is regular if for any x€Ob (&) and
a€G{x}, then either all or none of the elements of ¢~ !(a) lie in object groups of H.
Tt is easily verified that g is regular if and only if for each y€Ob (H), the group
q(H{y}) is normal in G{qx}. Similarly, a G-space (S; p, @) is regular if for all s in S,
the stability group G, of s is normal in G{ps}.

In a similar way to left G-spaces we define a right G-space (p, @; S), where
p:8~0b (&) is continuous, ¢: SXG 8, (s,a)— s+ a, is continuous with S X G given
by the pullback

SXG — 8
|
G'8—>Ob (&)

The axioms are that p(s-a)=0a, s 1,5H=$; (s+a@)-b=s- (ab) whenever they are
defined. The space of orbits of the action is again well-defined, and for a right
G-space S is written S/G.

We can transfer left G-spaces to right G-spaces, in the same way as is done for
actions of groups, by the rule s g=a"1-s.

We could also take our above definition of covering morphism to be a left-
covering and define a right-covering ¢: H —G to be a morphism such that (4, ¢):
H ~Ob (H)XG is a homeomorphism. However it is easy to see that aJ §-morphism
is a right-covering if and only if it is a left-covering. '

Example 3. Let p: X~ be a covering map of topological spaces, where X,
Y are locally path-connected and semi-locally 1-connected. In [4] a “lifted
topology” is described on the fundamental groupoids 7X, =¥ so that they become
topological groupoids, and it is proved that zp: nX ~zY is a topological covering
morphism. So X obtains the structure of a =Y -space.

Another example of covering morphisms comes from the morphism groupoid

(X, @) used in [3].
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Let X, G be topological groupoids. The set of morphisms X ~G is written
M(X,G); we give this the compact-open topology (as a set of functions from the
space of elements of X to the space of elements of &). We put a topology on the
groupoid (X, ) so that it becomes a topological groupoid with object space
M(X,&). ' :

If A, B are sets, let F(A4, B) denote the space of functions A —~B with the
compact-open topology. The elements of (X, () can be taken as pairs (f,9) such
that f(x)=&d(x) for each 2€0b (X) ([2] p. 196). Thus (X, @) can be identified
with the pull-back in the diagram

(X,d) ———— F(0Ob (X),6)

e

| o

M(X,qd) ———— F(Ob (X), Ob (&)

and this defines the topology on (X, &). The structure maps of (X, G) are: (i) 9":
(X,3)—~M(X,d) as in the above diagram; (ii) 9: (X, G)—-M(X, G) is given by
(f, #) > g, where g(a)=(#da)o (fa)o (90'a)™!, a€ X; (iii) the identity w: M (X, G)~
~(X, @) is given by u(f)=(f, ), where [: x> 1y, x€0b (X); (iv) the inverse o:
(X, @)~(X, Q) is given by (f,#) ~(2(f, #), 9 1). Clearly all these structure functions
are continuous, and so (X, @) is a topological groupoid.

’
%

0

Proposition 3. Let i: A—~X be a morphism of topological groupoids such that
Ob (i) is @ homeomorphism. Then i*: (X,G)—~(4,G) is @ topological covering
morphism.

Proof. Consider (i*, &): (X,G)~(4, )X M (X, d). Now (4,G)=M(4, X
?F(Ob (4), @). So we define an inverse to (i*, &') to be the composite

M(A, HXF(Ob (4), &)X M(X,6) ZLF(Ob (4), ()X M (X, &)
)~ 1% ~
POT *L F(Ob (X), G) X M(X, ).

We can combine left and right actions in a way which has important appli-
cations.

Let G, H be topological groupoids. A G — H-bispace is a quintuple (¢, y; S; p, @)
where S is a topological space, (S; p, @) is a left G-space, (¢, ; ) is a right H-space
and

9(a -5) =4(s)
p(s-b) =p(s)
a-(s-b)=(a.s)b
whenever sc 8, acG, be H and a-s, s-b are defined. Notice that if y€Ob (H) then
the action of G makes ¢~1(y) a left G-space, while if € Ob (&) then the action of H
makes p~1(2) a right H-space.
By an abuse of language we also say S is a G — H-bispace via p —¢.
A standard example of G —G-bispace is the groupoid G itself via 8-’ with
10%
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left and right actions given by composition in G. In particular, if x€0Db (G) then
Stex =& 4(x) is a left G-space via &. These particular actions are important in
what follows.

Example 4. One of the constructions in the proof of Theorem 2 generalises
to G — H-bispaces. Let S be a G — H-bispace via p —g. Then we define a topological
groupoid G X SXH to have object space S and elements the triples (g, s, k) in
G X8 X H such that p(s)=2(g), ¢(s)=20(h). The initial and final maps are given
by & (g, s, k)=s, (g, s, h)=g s+ h; composition is (9,8, 1) (9,8, R)=(9" 9,81 - h);
the unit and inverse functions are u(s)=(1,s, 1) and o(g, s, b)=(97%, g sk, h7?)
respectively. Now let ¢ X H be the subgroupoid of G X H of pairs (g, h) such that
there is an s in 8 with &(g)=p(s), 2(h)=q(s); let r: G XS X H ~G X H be the pro-
jection morphism. Then (r, &'): GXSXH-GXHXS is (g, s, h)— (g, b, s), and
is a homeomorphism. So 7 is a topological covering morphism.

An important use of G —H-bispaces is in constructing left actions of G on
spaces of H-orbits. Suppose S is a G —H-bispace via p—g. Although the left
action of G on S defines a left action of @ on the set S/H, as is easy to check, there
is a difficulty in proving continuity of this action due to the fact that a pull-back
of identification maps need not be an identification map; this difficulty can be
overcome in the useful special case given by the following theorem.

Theorem 4. If S is a G — H-bispace in which H is a topological group and Ob (&)
is HAUSDORFF, then the action of G on S determines on the orbit space S/H the
structure of a left G-space.

The proof is given in § 4.

Let G be a topological groupoid, let € 0b (G) and let D be any subgroup of
G{x }. Since G is a G —G-bispace, it follows by restriction that Stex is a @ — D-bispace.
We define @), to be the space (Stz)/D of left cosets of D. It is easily verified that
Gp *s a T-space if and only if D is closed in Sz, and we will see later (Propo-
sition 14) that this implies G is HAUSDORFF.

Corollary 5. If Ob (@) is HAUSDORFF, and D is a subgroup of G then left multi-

plication gives Gy, the structure of a left G-space.

This follows easily from Theorem 4.

Let G be a topological groupoid and § a transitive left G-space via p: 8§ —~0b (G).
Let s€, and let D be the group of stability of s. Then the mapping ¢;: Step(s) —
—~8, h> k- s, is surjective and defines a continuous bijection @, : G5 —~8. In general
@, will not be a homeomorphism—however, if ¢, is a homeomorphism for one s
in § then ¢, will be a homeomorphism for each s in S, and in this case we call S a
homogeneous space of G.

If @ is a topological group, there are useful conditions for a G-space to be
homogeneous. For example, if ¢ is a topological group which is complete and
satisfies the second axiom of countability, while S is a HAUSDORFF, non-meagre
G-space, then S is homogeneous (cf. [1] and [14]). For the groupoid case, we give
later a rather different type of condition for a G-space to be homogeneous.
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Let f: H—~G be any morphism of topological groupoids, and let yeOb (H);
the characteristic group of f at y is the subgroup f(H {y}) of G{f(y)}. Now Corollary 5
can be restated in a way which shows it to be the basic existence theorem in the
theory of topological covering morphisms.

Theorem 6. Let G be a transitive topological groupoid with HAUSDORFF object
space. Let € Ob (G), and let D be a subgroup of G{z}. Then there exists a topological
covering morphism q: H~G, such that H is transitive and there is a y in Ob (H)
such that the characteristic group of q aty is D. Further ¢: H —~@ satisfies the following
universal property:

if r: K—~G is a topological covering morphism, 2€0b (K) is such that r(z) =%
and the characteristic group of r at z contains D, then there is a unique topological
eovering morphism s: H—~K such that s(y)=2 and rs=q.

The proof is given in § 4.

A special case of this theorem is when D is the trivial subgroup, so that
Gp=81zr. Then G X Stgx ~G is called a universal topological covering morphism of
@, since it covers any other topological covering morphism of G.

§ 3. The locally trivial case

An important class of topological groupoids introduced by EHRESMANN is
that of locally trivial groupoids. These arise in nature because of their close
connection with principal bundles. From our point of view they are convenient
because one can construct continuous lifts of morphisms (Proposition 7). '

Definition. A topological groupoid G is locally trivial if for each z,€0b (G)
there is an open neighbourhood U, of z, and a continuous function 2,: U, ~G
such that 1 (x)€G(x,, x) for all x in U,. (There is clearly no loss in generality in
assuming 4,(x,)=1, .) .

The following example shows that local triviality is a restriction.

Example 5. Let @ be a non-trivial topological group with the discrete topology,
and let S be @ with the indiscrete topology. Multiplication in the group turns S
into a left G-space. The topological groupoid GX S satisfies: (GXS) (s,?) has
exactly one element for all s, teS. However GX 8 is not locally trivial, since the
identity mapping S -G is not continuous.

- Suppose now given a diagram of morphisms of groupoids,

H

g

F —G
f
in which ¢ is a covering morphism. Suppose further that F is transitive and that
y€O0b (H), z€0b (F) satisfy ¢(y)= f(z). Then a necessary and gufficient condition
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for f to lift to a morphism f*: F —H such that [*(z)=y is that f(F{z}) is a subgroup
of g(H{y}) ([11], page 107). However that proof of sufficiency involves choosing a
tree in F, and so cannot be expected to go over to the topological case without
additional assumptions. ’

Suppose given a commutative diagram

7

a0

f

q

such that F, G, H are topological groupoids, fis a J~ &-morphism, ¢ is a topolo-
gical covering morphism, and f* is a & -morphism.

Proposition 7. If ' is locally trivial then f* is continuous, i.c. is 4 T % -morphism.

The proof is given in § 4. ‘

This proposition enables algebraic results given in [2], [11] to be translated
into the topological case as follows.

Let q: H~G, ¢': H ~@ be topological covering morphisms such that H, H’
are transitive let y<Ob (H), ¥’ €Ob (H’) be such that 9¥)=9" (%), and let C=
=qH{y}), O =q'(H"{y'}).

Corollary 8. If H is locally trivial, then there is unique topological covering
morphism r: H—~H’ such that ¢'r=q and r(y)=y" if and only if CSC’. Further
if H also is locally trivial then r is topological isomorphism if and only if C=C".

Corollary 9. Let H be a locally trivial topological covering groupoid of G such
that H(x, y) has one element for all objects x, y of H. Then H is a universal topological
covering groupoid of G.

To complete the story we need criteria for a topological covering of @ to be
locally trivial-this is most conveniently phrased in terms of G-spaces as in the
next proposition. Theorem 12 then gives a useful condition for the existence of
locally trivial topological coverings of G.

Let f: X - be a map of topological spaces. We say f is a submersion if for
each x€X there is an open neighbourhood U of f(z) and a continuous function
A: U ~X such that 2f(x)=2 and fi=1,. _

Notice that a submersion is necessarily an open mapping.

Proposition 10. Let G be a topological groupoid and (S; p, @) & left G-space.
Then the following conditions are equivalent.

(i) GX S is locally trivial.

(i) For each s€ 8, the function ¢ : Stup(s)~8, a+>a - s is a submersion.

(iii) For each s in 8 the orbit G, of s is open in 8, and the projection @,: Stap(s) ~Gs
is & locally trivial principal G -bundle.

The proof is given in § 4.

A consequence of Proposition 10 is that if § is a transitive G-space and GX 8
is locally trivial, then § is homogeneous. Also by taking S=0b (&) we see that
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Proposition 10 contains a result of BErrEsMANN [7], that if G is locally trivial and -
2£€0b (@), then ¢: Stz ~O0b (&) is a locally trivial principal G{xz}-bundle.

A result in a different direction is the following.

Proposition 11. Let G be a tramsitive, locally trivial topological growpoid.

() Ifg:H-Gisa topological covering morphism such that H is transitive, then
Ob (¢): Ob (H)—~O0b (&) is an open map. :

(i) If (S; p, @) is a transitive left G-space then p: S —~0b (@) is an open map.

By results of § 2 either of (i) or (i) implies the other—the proof of (ii) is given
in §4.

The condition of local triviality cannot-be dropped. For example, if G, S
are as in Example 5 then Sigxg¢e is a (@X 8)-space via 0; also @: Slgxge—~S 18
continuous and bijective. But ¢ is not a homeomorphism, and so is not open.

Let H be a topological group. A subgroup D of H is said to be good if the right
action of D on H makes H a locally trivial, principal D-bundle; a necessary and
sufficient condition for this is that the projection H ~H/D is a submersion ([8],
page 48, Corollary 8.3). For example, any closed subgroup of a Lie group is
good. '

Recall that if @ is a topological groupoid, %€ Ob (G), and D is a subgroup
of G{x,}, then Gy, is the space of left cosets of D; and that if Ob (&) is HAUSDORFF
then G, is a left G-space. We say D is a good subgroup of G if it is & good subgroup
of G{x,}-

Theorem 12. Let G be a locally trivial topological groupoid such that Ob (G) is
Havspor¥E. Let D be a good subgroup of G. Then GGy, is locally trivial.

The proof will be given in § 4.

This theorem can be combined with previous results and the classification
theorem for the abstract case to yield a classification theorem for topo-
logical covering morphisms.

Theorem 18. Let G be a locally trivial, transitive topological growpoid with
HAUSDORFF object space, and such that all its closed subgroups are good. Then there
is a bijection between conjugacy classes of closed subgroups of G and equivalence
classes of locally trivial, transilive, topological coverings of G with HAUSDORFF
object space. .

This theorem follows from previous results and the following proposition,
whose proof is given in § 4.

Proposition 14. Let G be a locally trivial topological groupoid with HAUSDORFE
object space. Let D be a subgroup of G{ao}. Then the following conditions are equi-
valent:

(i) D is closed in G{xo},
(i) Gpis Ty,
(iii) @p is HAUSDOREFEF.

Tinally, in Topological Groupoids 1 ([5]) we proved the existence of quotient
topological groupoids. We now show that the quotient topological groupoid G/N
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of a locally trivial topological groupoid G by a wide, totally disconnected, normal
subgroupoid N is locally trivial. In fact we prove more, namely

Theorem 15. Let G be a locally trivial, topological groupoid, and N a wide normal
subgroupoid of G such that Ob (p): Ob (¢)~Ob (G/N) is a submersion. Then GIN
is a locally trivial topological groupoid.

The proof is given in § 4. )

§ 4. Proofs

Proof of Proposition 1. We have a commutative diagram

H s —— H

6

Let q: H~@ and r: H —~H be topological covering morphisms. Then clearly,
for each &’ €Ob (H’), p|Stgk’ is a homeomorphism onto Step(h’) so that p is an
abstract covering morphism and the unique lifting morphism s,: GXO0b (H)~H
exists. Continuity follows easily from the diagram,

- s
GXOb (H) LAY
(1X0b (1), )| %1 ls,
- Y 8 ~
GX0b (H)XOb (H') ———HXO0b (H")
where 7y: GX Ob (H’)~Ob (H’) is the obvious projection.

Conversely, let ¢: H—~G and p: H —~G be topological covering morphisms.
Then again it is easy to see that for any A€ Ob (H"), r | Stzh’ is a homeomorphism
onto Siyr(h’) so that the unique lifting morphism s,: HXOb (H')—~H’ exists.
Continuity follows from the diagram

~ s
H X 0b(H") z H'

gxX7 s

GX 0b(H)

o«
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Proof of Theorem 4. We are considering the G — H-bispace (g, y; s; p, ¢). We.
have to prove that the action ¢": @ X S/H —S/H induced by ¢ is continuous.

Let 7: 8 —+8/H be the quotient mapping. Then r is an open mapping, hence
1%7: GXS—~GXS/H is open, and so a quotient mapping. But GX S is a (1Xr)-
saturated subset of @ XS and is also, since Ob (G) is HAUSDORFF, closed in G X 8.
So 1Xr: XS ~GX 8/H is a quotient mapping. Since ¢” (1X7) =g, it follows that
¢’ is continuous.

Proof of Theorem 6. By Corollary 5, G, is a left G-space and we let ¢: H ~G'
be the corresponding topological covering morphism. Let y be the coset D in Gy,.
Then q(H{y})=D the group of stability of D in Gy,

Now suppose 7: K —@ and z€Ob (K) given as above. Then G operates on
Ob (K) and so we can define A: Stz ~Ob (K), a— a-z. Since z is stable under
D, b factorises through »”: G;,—~O0b (K). Clearly 2" is a G-map and so defines by
Theorem 2 a morphism s: H—K such that rs=¢ and Ob (s)=h", whence s(y)=z.
By Proposition 1, s is a topological covering morphism. This proves existence of s
and uniqueness is simple to verify.

Proof of Proposition 7. Let {1,: U,—~F} be a trivialising cover of F. Let
St,U,={acF: #acU,}; then {St,U,} is an open cover of F and so it is sufficient
to prove f* continuous on St,U..

Let a€StpU,. Then

fHa)=f*(a-1(0a) - f*(A(0a)7") ,
= s(fla- 2,07 @), f*(z,)) - 8,(fAl& @), [ ()

which is clearly a continuous function of a.

Proof of Proposition 10. (i)=-(ii) Let a€Styp(s). Then by hypothesis there
exists an open neighbourhood U of @ s in § and a continuous function 4: U ~GX S
such that A(e-s)=1,4,4="(15,¢"s) and Mt)eGX S(a - s, t) whenever t€ U. Let
At)=(A4(t), @ - s), so that A;()€G and A((t)-a-s=¢t, for t€ U, while A4(a - s)=1,,.
Then if u(t)=2(t) a, € U, we have u(a-s)=a and gu(t)=2A(t) - a-s=t. (ii)=-(i)
Let sc8, and suppose ¢,: Step(s)—~S is a submersion, and u: U—~Stgp(s) is a
continuous function from an open neighbourhood U of s such that g u=1; and
w(8) =1Ly Let : U ~G'X S be given by t—>(u(t), s). Then &'A(t) =s, 0A(t) = u(t) - s=L.
So GX S is locally trivial. (ii)=(iii) Let s€.S, and let u: U ~Stgp(s) be a local
cross-section of g, such that u(s)=1,4. Then U is contained in the orbit Gs of s;
thus Gs is open in 8. Now Sigp(s) is clearly a principal G{p(s)}-bundle in the sense
of [12]. Hence it is also a principal G-bundle. But a principal bundle under a
group action is locally trivial if and only if the projection to the orbit space is a.
submersion. This proves (iii). (iii)=(ii) Let s€S. If Stgp(s)~G's is alocally trivial
principal G;-bundle then it is a submersion. Since G's is open in S, it follows that
Step(s)—8 is a submersion.
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Proof of Proposition 11(ii). Let s¢S. The following diagram is commutative.
Since G is transitive and locally trivial, Proposition 10 implies @ is an open map.
Since § is a transitive G-space, ¢, is surjective. Hence p is an open mapping.

Sfb_pfs)
Ps
a S
: P
b 16)

Proof of Theorem 12. We need the following lemma which is probably well-
known.

Lemma. Let H be a topological group and X a locally trivial principal
H-bundle over X /H . Suppose that D is subgroup of H such that H -~ H/D is & locally
trivial principal D-bundle. Then X —X/D is a locally trivial principal D-bundle.

Proof. Let p: X~X/H, q: H~H/D, r: X ~X/D be the projections. Let
z€ X ; we wish to find a neighbourhood W of r(x) such that »~4W) is D-isomorphic
to WXxD.

Let U be a neighbourhood of p(x) such that there is an H-isomorphism o:
P~ Y U)~UXH. Let a(z)=(p(z), ). Let V bea neighbourhood of ¢(x") such that
there is a D-isomorphism : ¢~ V)~V X D. Then W =a~1(U X q(V)) is an open
neighbourhood of @ which is D-isomorphic to U X V X D. Let W=r(W’). Then W
is homeomorphic to U XV, and (W) is D-isomorphic to W x.D. This proves
the lemma.

We now obtain Theorem 12, which is equivalent to Stgxy—~G)) being a locally
trivial principal D-bundle, by taking X =St,a, and H =0{z,}.

Proof of Proposition 14. Clearly (iii)=(ii) = (i). So we need only prove (i) == (iii).
Now a: Stgay—~O0b (G) is a locally trivial, principal G{xo}-bundle. By [12], page 70,
Theorem 1.1, 9;,: G, ~Ob (G) is canonically isomorphic to the associated fibre
bundle, with fibre G{z,}/D. Therefore ,: G;,~O0b (@) is a locally trivial fibre bun-
dle. But Ob () is Havsporrr, and G{a,}/D is HAUSDORFF, since D is closed in
G{x}. Hence G, is HAUSDORFF.

Proof of Theorem 15. Let p: G—~G/N be the canonical T@-morphism. Let
CeO0b (G/N), and let z€Ob () satisfy p(x)=C. Then, since Ob (p): Ob (G)—
~Ob (G/N) is a submersion, there is an open neighbourhood ¥V of €' and a con-
tinuous function u: ¥ —~Ob (&) such that u(C)=2z and Ob (p) p=1y.

Now @ is locally trivial, so there is an open neighourhbood U of « and a con-
tinuous function 4: U ~6 such that A(x)=1, and é1=1,. Let I =u~1(T7). Then U
is an open neighbourhood of €, and Z=piu: U —~G/N satisfies 81=1; as required.
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