Identities among relations

R. BROWN and J. HUEBSCHMANN

Introduction

An "identity among relations" is for a presentation of a
group what a "syzygy among relations", as considered by Hilbert,
is for a presentation of a module. The notion has ramifications
in topology as well as in combinatorial group theory, and in
particular is involved in some difficult problems in the algebraic
topology of 2-diminsional complexes. Our aim is an exposition of
this area explaining the connections with the following topics:

§1 Presentations and identities

§2 Pre-crossed and crossed modules

§3 Free crossed modules

§4 The associated chain complex

§5 Relationship with 2~dimensional CW~complexes

§6 Peiffer transformations

§7  Aspherical 2~-complexes and aspherical presentations

§8 The identity property

§9 Examples and an unsettled problem of J.H.C. Whitehead

§10 Links and pictures

This will give also some background to the "two dimensional
group theory" of the article [Br2] in this volume, and will

contain all the prerequisites for the (posthumous) article by
P. Stefan in this volume [St].

1. Presentations and identities

We consider a presentation P = (X; R) of a group G .
Thus we have a short exact sequence

l1—N—F—>GC—1
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where F is the free group on the set X , R is a subset of F
and N = N(R) is the normal closure in F of the set R . The

group F acts on N by conjugation c — " = u-lcu , for
ce N, ueF , and the elements of N are of course all
consequences of the set R , that is any c ¢ N is of the form
€, U
1 2,72
(r2 ) eee ()

where r, e R, €, =*1 , u, € F .
i i i

An <dentity among relations is, heuristically, such a
specified product in which ¢ =1 in F . A formal definition is
given below, but let us first consider some examples.

EXAMPLE 1. For any elements r, s of R we have the identities

r—ls—lrsr =1

-1

-1 -171 ~
s r's =1 where r =1 .

r

These identities hold always, whatever R .

EXAMPLE 2. Suppose re R, s e F and r = s" . Then rs = sr
(i.e. s belongs to the centraliser C(r) of r ) and we have
the identity

r_lrS =1.

However, for an element r of a free group F there is a unique
element z of F such that r =2z* with ¢ maximal, and then
C(r) 1is the infinite cyclic group on z . This element 2z is
called the root of r , and if q > 1 , then r is called a
proper power . So if r 1rS =1, then s 1is a power z2"  of
the root of r (cf. [L-S], p.10, I.2.19).

EXAMPLE 3. Suppose the commutators [x, y] = x_ly_lxy, [y, 21,
[z, x] are among the relations. Then the well-known rule

[x, yllx, 27 [y, 210y, x1* [z, x1(z, y1* = 1
is an identity among the relations (since [y, x] = [x, yJ_l) .

EXAMPLE 4. Consider the standard presentation (x, y; r,s,t) of

Zz x 222 in which r = x2, s = y2, t = x—ly—lxy . We have an
identity among relations
rtsxy(r-l)y s L hy*

(t =1,

as is easily checked. This identity may be read as a path starting



at 1 in the Cayley diagram;

Figure 1

EXAMPLE 5. Consider the standard presentation (x, y; r,s,t) of

S3 , the symmetric group on three letters, in which r = x3 s

s =y, t =2xyxy . We have an identity among relations
ts-lt(S—l)x(r—l)yxtx(s-l)xxr—l -1

as is easily checked. This identity may be read as a path starting
at 1 in the Cayley diagram:

Figure 2

(Precise methods for obtaining the identities from these diagrams
are given in §10).
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Note that in these examples, conjugation is crucial. Indeed
in the last example the elements r , s , t freely generate a
subgroup of F .

The precise idea of specifying a consequence of the relatioms,
and in particular of specifying an identity, is similar to that of
specifying a relator as an element of a free group, but takes the
action of F into account. The definitions are due to Peiffer
and Reidemeister [Pe, Re2].

One extra formality is needed first. We wish to allow for
repeated relations, and so regard a presentation P as a triple
(X; R, w) where R is a set, wi: R—> F 1is a function to F ,

the free group on X , and R is assumed disjoint from F .,

The elements of R will be writtem p, 0, T,... and the elements
Wp, WO, WI, ... will be written r, s, t ... . We write
R=w(R) and N = N(R) as above.

Let H be the free operator group on R with right operators
(th, u) F— n' s h e H, u € F, from F . Thus as a group H 1is
free on the set Y =R x F, the elements of which are written
pu, peR,ue?F, with pl written p and (pu)-'1 written

p-u or (p—l)u

We mention an alternative way of obtaining H (cf. [Pe; Satz
3 on p.69], [Me2]).

PROPOSITION 1, Let F(X u R) denote the group freely generated
by Xu R . Then H <s isomorphic to the normal closure of R
in FX uR) .

Proof. Clearly F(X u R) contains F , the free group on X ,

and F is a Schreier transversal for the normal closure of R
in F(X u R) . The Reidemeister~Schreier method gives the

elements u—lpu, p e Ry ueF, as a basis for this normal
closure. [

Let 6: H— F be the homomorphism of groups given on the
basis elements by

8"y = u-lru , where r =wp, pe R, uebF.

If we let F act on itself by conjugation, then 6 1is an operator
homomorphism, that is

o(n") = u—l(eh)u, heH ue F.

Further 6(H) = N .
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We now define the <dentities among the relations for the
presentation P = (X; R, w) to be the elements of the kernel E
of 6: H—F .

However the group E contains certain identities which are
always present, namely those corresponding to the identities in
Example 1. We therefore consider in E the basic Peiffer elements,
namely those of the form

-1 -1 _6fa
a

P = b ab, a, beY.

More generally, any element of H of the form

1 -1

p =0 Kk h, ke w

will be called a Peiffer element; such an element is an identity,
i.e. belongs to E . These elements were introduced in [Pe;
pP.70] (not in the form given above) and [Re2] .

The aim now is to factor out the Peiffer elements since these
correspond to identities which are always present, It is con-
venient to discuss the situation in greater generality.

2. Pre-crossed and crossed modules

Let T be a group. A pre-crossed T-module (A, 8) consists
of a group A ; a homomorphism &: A —> T of groups; and an
action of T on the right of A , written (a, u) }— au, a e A,
uerl . Asole condition imposed is:
CM1) G(au) = u_l(da)u sa€eA,uel.
If we regard T as acting on itself by conjugation, then CM1L

says simply that ¢ is a I'-morphism.

The pre~crossed I'-module (A, 8) is a crossed T'-module if
it also satisfies

CM2) a—lba = bda’ a,beA.

Let (A, §) , (A', §') be pre-crossed I'-modules. A morphism
of pre~crossed T-modules ¢:(A, 8) —> (A', §') 1is a I'-morphism
¢: A —> A' of groups such that &'¢ = § .

We shall construct from any pre-crossed I'~module a crossed
I'-module.
Let (A, §) be a pre~crossed 'module. We call the elements

<a, b>= a-lb—labGa

for all a , b € A the Peiffer elements of A . We call the
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subgroup of A generated by all Peiffer elements the Peiffer
group of (A, §) . (We are here generalising a terminology used
for the special case of the free pre-crossed F-module (H, 6)
derived from a presentation. The Peiffer elements are then
sometimes called crossed commitators; the elements of P are
sometimes called Peiffer identities; and the term Peiffer group
is used in [Me2] .)

PROPOSITION 2. Let (A, 8) be a pre-crossed T-module. Then the
Peiffer group P of (A, 8) <s normal in A and T~invariant.

Proof. Let a, b, c € A, Then

c—1< a, b>c=<ac, b><c, b(Sa >—1 .

Thus a conjugate of a Peiffer element is a product of Peiffer
elements, and so P 1is normal,

Let a ,be A, uel . Then

u u ,u
<a,b> =<a,b >

(on using S(au) = uﬂl(éa)u ) . So P is T'-invariant., [

COROLLARY. Let (A, 8) be a pre-crossed I'-module. Then there
is a crossed I'—-module (C, 3) and a morphism

¢: (A, 8) — (C, 3) of pre-crossed T'-modules, such that ¢ <s
universal for morphisms from (A, §) to crossed T-modules.

Proof. Let P be the group defined above. Then the quotient
group C = A/P is well-defined, and C inherits a T-action and
a I'-morphism 9d: C— T . So (C, 3) is a pre-crossed I'-module.

By definition of P , we have c-ldc = dac for all ¢ ,deC,
and so (C, 9) 1is a crossed I'module. The quotient morphism

A —> C 1is clearly a morphism of pre-crossed I'modules and is
universal for morphisms of (A, §) to crossed I'-modules. [

The above construction can be applied to the pre-crossed
F-module (H, 6) constructed above from a presentation
P=(X; R, w) of agroup G . This will give a key example of
a crossed F-module for F a free group.

In this example, we shall be interested in the way the
Peiffer group of (H, 8) 1is generated. The general result for
this is the following.

PROPOSITION 3. Let (A, 8) be a pre-crossed T-module and let

V be a set of generators for the group A such that V 1is
r-invariant. Then the Peiffer group P of (A, 8) 1is the
normal closure in A of the set Z of Peiffer elements <a, b>
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with a, b e V.,

Proof. Let P' be the normal closure in A of Z . Then

P' <« PcKer § . The rule < a, b > = < au, b > , a be A,
uel , shows that Z , and hence also P' , is I'—invariant. So
C' = A/P'" becomes a I'—group and 6§ induces 23': C' — I' making
(C', 3') a pre-crossed TI-module.

Since V generates A as a group, we have
3! -1
x Y=y xy (*)
for all x , y in a set V' which generates C' as a group.
For fixed y , the set of x satisfying (*) 1is a subgroup of
C' , so (*) is true for all y e V' , x € C' . Also the set of
y satisfying (*) 1is closed under multiplication (because
1 ] ) - 1 -] -
xa (yz) = (xa y)a i =z l(xa y) z =z 1y 1xyz) and under inversion
'y~

1 - -
(because if x° 7Y =w , then x = w3 v - y 1wy » SO W = yXy 1).
It follows that (*) holds for all x , y € C' , and hence

Pcp'., 0

COROLLARY. Let (H, 6) be the pre-crossed F-module derived
from a presentation P = (X; R, w) . Then the Peiffer group P
of (H, 6) <s the normal closure in H of the basic Peiffer
elements <a,b >, a,beRxF. 0O

We have now constructed a useful family of crossed F-modules,
namely, those derived from a presentation. These examples will
be fundamental in later pages. Other examples of crossed I'—modules
are:

(i) (A, 1) , in which i 1is the inclusion of a normal sub-
group A of T and T acts on A by conjugation,

(ii) (A, 0) in which A 1is a I'—module in the usual sense and
0 1is the constant map,

(iii) (A, §) , where A 1is a group, I = Aut A acts on A in
the obvious way, and &§: A — Aut A assigns to a in
A the inner automorphism x F—a~lxa of A .

Thus a crossed module generalises the concepts of a normal
subgroup and that of an ordinary module.

We shall need some basic algebraic properties of crossed
modules.

Let (A, 3) be a crossed 'module. We write m for Ker 3
and N for Im 3 . So we have an induced exact sequence of
I'-groups 3

l1—17—A—N—71 (*).
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We can now state some easy properties of these groups.
(2.1) N <8 normal itn T so that we can set G = Coker 3 to
obtain an exact sequence of groups

l1—N—T —G—1

(2.2) 1 <s contained in the centre ZA of A , and in particular
m 18 abelian .

(2.3) The subgroup N of T acts trivially on ZA , and so also
on T ; hence T <inherits an action of G =T/N to become a
G-module.

(2.4) The abelianised group A = A/[A, A] inherits a structure
of G-module.

This last result is proved by noting that N = 3A acts
trivially on A since for a, b € A the element (b_l)aab is

the commutator a-lb_lab, by (CM2) .

Since N 1is normal in T , the action of T on N by
conjugation determines an action of G on the abelianised group
N = N/[N, N], so that N becomes a G-module. It is clear that
(*) determines an exact sequence of G-modules

mT—>A—>N—70.

In general the map m —* A 1is not injective., To see this,
consider a group A and the crossed (Aut A)-module (A, 8) of
(iii) above. Then 7 = Ker 3 is the centre ZA of A . There
are non-abelian groups A such that 1 # ZA c [A, Al , for

example the quaternion group, the dihedral groups Dy s and many

others. For all these, the composite 7 = ZA —> A — A is
trivial, and so not injective. This example gives point to the
following result, which uses the notation of previous paragraphs.

PROPOSITION 4. If the exact sequence (*) has a section (a
group homomorphism but not necessarily a T-map), then A <s
isomorphic as group to w x N . Further [A, Al n w = {1}, the
induced map w —> A is injective, and so the sequence

00— 1— A— N—0
18 a short exact sequence of T-modules.
Proof. Let s: N— A be a section of (*) . Then A =7 x sN

(since 7 1is in the centre of A). Since 7 1is abelian,
[A, A] = [sN, sN] whence [A, Al nm = {1} . This implies

T —> A injective. O
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These results apply to the crossed F-module (C, 3) derived
as in §1 from a presentation P = (X; R, w) . In this case F is
a free group and hence so also is N = 3C . The sequence

]
1— 71— C2>N— 1_ has a section, and so Proposition 4
applies. The G-module N has been much studied - it is’ called
the relation module of P (see [Dl-4, G2, L1-2, Wel) . We will
see more of N later.

In the next section we present an important universal
property of the crossed F-module (C, 3) of a presentation P .

3. Free Crossed modules

Given a presentation P = (X; R, w) we constructed in §1 a
pre-crossed F-module (H, 6) , where F is the free group on X .
From this we can construct a crossed F-module (C, 3) . It is
convenient to give these constructions in greater generality.

Let (A, §) be a pre-crossed I'module, let R be a set and
let v: R—> A be a function. We say (A, §) 1is a free
pre-crossed T-module with basts v if for any pre-crossed I'—module

(A', 6') and function v': R —> A' such that §'v' = év , there
is a unique morphism ¢: (A, §) — (A', §') of pre-crossed
-modules such that ¢v =v' ., 1In such case, we also emphasise

the rdle of the function w = évi R —> I' by calling (a4, §) ,
with the function v , a free pre-crossed I'-module on w .

1f (A, §) 1is a crossed I'module, and (A, 8) with v has the
above universal property for maps into crossed I'-modules, then we
call (A, 8) a free crossed T-module with basis v (or on w) .

PROPOSITION 5. Let T be a group, R a set and w: R— T a
function. Then a free pre-crossed T-module on w , and a free
erossed T-module on w , exist, and are each uniquely determined
up to tsomorphism.,

Proof. For the existence of a free pre-crossed I'-module we
generalise easily the construction of §1 . That is, we let H be
the free group on the set R x I' , and write the elements of this

set as pu, peR,uel ., Let T act on H by acting on the
generators as (pu)v =W ,Pp€R,u,vel . Define 6: H>T
by its values on the generators

8(p") = u-l(wp)u s, PpeR,uerl.

Define v: R— H by v(p) = p1 , p e R, so that év =w .
Then (H, 6) is a pre-crossed I'module, which, with v , is easily
checked to be a free pre-crossed I'module on w .

From (H, 8) we can form a crossed I'-module (C, 3) by
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factoring out the Peiffer elements. Then (C, 3) witn the
composite R —> H —> C 1is a free crossed I'-module on w .

The uniqueness of these constructions up to isomorpiism
follows by the usual universal argument. U

The definition and construction of a free crossed I'-module is
due to Whitenead [Wn3] . We have followed a suggestion of
P.J. niggins and snown tine rdle of the pre-crossed modules, since
tihey are used implicitly also in some later proofs.

It is clear from the comstruction of the free pre-crossed
I-module (H, 8) on w : R —> T that the basis function
v : Kk — d 1is injective. We wish to have tnis result for the
free crossed I'-module.

PKOPOSITION 6. Let (C, 3) be the free crossed T-module on
w : R —> T , with basts function v : R— T . Then v 1is
injective.

This is most easily proved using the following result.

PROPOSITION 7. If (C, 3) <s a free crossed T-module, with bastis
v : R— C , and G = Coker 3, then the abelianised group C is

a G-moaule that is free on the composition Vv : R L c—T.

Hence V , and so also v , 18 injective.
Prooy. By (2.4), C hnas the structure of G-module.

Let p : T — G be the quotient map, and let M be a
G-module. Tnen T x M , with projection to T , becomes a crossed
I-module with action of T by conjugation on I and via p on
M.

Let v' : R — M be a function. Define v'" = (ov, v') : R
— T x M . Freeness of C gives a morphism ¢ : C —> T x M of
crossed T-modules such that ¢v = v'"' . Composition with
projection gives ¢' : C —> M , a morphism of groups which factors

through ¢ : C — M . This is a G-morphism as required. [

We can now regard v and v as inclusions, and link
Proposition 7 nicely with Proposition 4.

COROLLARY. Let (C, 3) be the free crossed F-module constructed
as above from a presentation (X; R, w) of a group G . Write
m=Ker 3 , N=1Im 3 . Then the induced map j : m —> C <4s
injective and there is an exact sequence of G-modules

0— 1 T4 N—0
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in which C 1is the free G-module on the elements v(p) = plC, CI,
pe R, and d <s given by d(plC, CI) = w(p)[N, NI, p € R

Proof. Since F 1is free, so also is N , and so the surjection
3'": C — N has a section. [

From now on, we call 7 the module of identities for
P = (X; R, w) , or the module of identities among the relations of
P .

4. The Associated chain complex
Given a presentation P = (X; R, w) of a group G , there is

a standard way of constructing a chain complex of free (right)
G-modules

d2 d1
cP): C2(P) — Cl(P) — CO(P)
in which
CO(P) =ZG ,
Cl(P) =® ZG,
X
c,(P) =@ ZgG
2 R

with bases (as Z G-modules) respectively 1; ei for x € X
and ez for pe R. Let F be the free group on X and let
the projections F —> G , ZF —> Z G determined by the

presentation both be denoted by ¢ . Then the boundaries are
given by
1 = -
dl(ex)—l ¢x , x e X
2 1
d2(e ) =Z e . ¢(3r/3x) , p eR
P X X

where 3r/3x 1is the element of ZF known as the Reidemeister-
Fox derivative of r = w(p) . It is computed as follows (see for
example [C-F], [Bi]) .

First recall that a derivation £ from a group T to a
(right) I-module M 1is a function f: I' — M satisfying

f(uv) = f(u).v + £(v), u, verTl (4.1).
This implies that £(1) = O and that

fFl) = -f(. Y, uwer (4.2).



164

From (4.1) it follows that if u € I' can be written as
U=y oeee ¥V, then

f(u) = f(yl) Yy eee ¥y * f(y2) Vg oeee Yy ¥ oeee t f(yn) (4.3).

It follows from this and (4.2) that if T =F , the free group on
X , then a derivation f on F may be computed from the values
f(x) , x € X . It is also not hard to prove the converse, that
given the values f(x) , x ¢ X , the formulae (4.2) and (4.3)(with

v € Xu X—l) determine uniquely a derivation £ . (The neatest

proof relies on the fact that the derivations F — M are
bijective with the right inverses of the projection M XF —F
of the semi-direct product of M and F , cf. for example
[Hi-st], p.196.)

It follows that for any x in X there is a unique

derivation F — ZTF whose value on a basis element x' ¢ X is

6xx' (the Kronecker delta). This derivation is written 23/3x .

We can now give the formula for d2 as follows: suppose
w(p) = Yp eer Y, € F where y; € Xu X_1 ,1=1, ..., n; then

aed = I % . e ) (4.4)
2 ep i=1 Vi - ¢ Vi+1 Yi+2 = Y *
where if y e X v X_1 ,
1 .
A e, if y=x¢€e X,
y = - _
—ei(¢x) 1 if y 1. x € X .

We shall use this formula for d2 in 85 .

There is another way of expressing this formula. For any
group I the functor Der(l, -) (of derivations from T to =)
is represented by the augmentation ideal 1II' , and any derivation
f: T — M 1is uniquely the composite of a homomorphism
£*¥: IT — M of T'modules and the derivation T — IT ,

u —>1-u (see for example [Hi-St], p.194). If I =F as
above, then II' is the free I'-module on the elements 1-Xx,X € X
(loc. cit. p.196), and so one may identify § ZF and IF by the

rule ei —>1 - x . So one has an identification

® ZG— IF®, K6 ZG
X F

given by ei — (1 - x) ®1 ., With this identification d2 may

be described simply as
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dz(ez) =(1-1r)elelF @F ZG, where r =w(p).

This description is often convenient in homological algebra.

PROPOSITION 8. The module w of identities for P = (X; R, w)
18 isomorphic to the second homology module H2(C(P)) » LT.e. to
the kernel of d, .

Proof. In the previous section we have constructed an exact
sequence of G-modules
d

00— 1 —>C—>N—0.

We shall prove later (Corollary 1 to Proposition 9) that the rule

r }-—rdz(eg) (r = wp) induces an injection i: N — ® ZG ; an
X

algebraic proof of this, using the latter form of d2 , is given

for example on p.199 of [Hi-St]. So we have a commutative diagram

~

—— ¢, (P)

)

[= 9
Z —— Al

i
— ;P

with i injective, and hence 7 is isomorphic to the kernel of
d, . O
2

5. Relation with 2-dimensional CW-complexes

Let K be a connected CW-complex of dimension 2. Shrinking

a tree in Kt to a point does not change the homotopy type of K,
and so we assume that K has only one vertex, say a . Then the
fundamental group G = nl(K, a) has a presentation (X; R, w)

such that the elements x of X are bijective with the l-cells
1

X

e§ of K ; and the relators r =w(p) , p € R are determined up

to conjugacy by the attaching maps fp: S1 — Kl of the eg'

ey of K ; the elements p of R are bijective with the 2-cells

s .
Conversely, given a presentation P = (X; R, w) of a group
G , one can form a CW-complex K = K(P) with one vertex a ; a
l1-cell ei for each element x of X (so that ﬂl(Kl, a) is
the free group F on X) , and a 2-cell ez for each element

p of R, attached by a representative of the relator r = wp in
F . The homotopy type of K(P) (and in fact the simple homotopy
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type [S1, Wrl) is independent of the choice of representative
attaching maps for the 2-cells. Note also that for K(P), the
attaching maps fp preserve the base point, i.e. fp(l) =a. We

call K(P) the geometric realisation of P .

We shall show how to identify the chain complex C(P) of the
presentation with the cellular chain complex of the universal
cover K of K =K(P) . For this, recall that the cells of K
have characteristic maps which are precisely the lifts of the
characteristic maps of the cells of K . This gives a convenient
notation for the cells of K as follows.

The set &° of vertices of K is simply G = ﬂl(K, a) .
The 1-cells of K are bijective with X x G and so are written
1

e
(x, &)
where ¢: F —> G 1is the projection. We write the edge path

, (X, g) e XxG, and e%x’ 2) joins (¢x)g to g,

along e%x y as (x, g) and its inverse as
-1 & ~
(x, g) 1 (x_l, (¢x) g) . The 2-cells of K are bijective with

R x G and so are written as , (p, 8 € R x G, this cell

(p, 8)
being attached by a map fg: iy lifting the attaching map

fp of es . Suppose the class of fp in F = ﬂl(Kl, a) 1is
L=y, e ¥y where y; € Xvu X-l ,1=1, ..., n . Then by the
uniqueness of path-lifting, the class of fg in nl(ﬁl, g)
contains the edge path

(Yl, gl) (y23 gz) cee (yns gn)
where (5.1)
gl = 4£Y2 XK yn) &s 8y < ¢(Y3a ceey Yn) 8y cces B =8 .

PROPOSITION 9. The cellular chain complex (C*(E), 3) of the
universal cover K of K = K(P) <s G-isomorphic to the chain
complex C(P) associated to the presentation P .

~i-1

Proof. The cellular chain group Ci(i) = Hi(il, K~ 7) 1is the

~

free abelian group on the i-cells of K, and so has a base which
can be identified with R x G if i =2 , with X x G if i =1

and with G if 1 =0 . Since e%x ) joins (¢x)g to g we
have » 8

al(x’ g) = (1L-¢x)g, (x,8) €XxG.

Suppose (p, g8) ¢ Rx G and wp = Yy e Vg where y, € XU X—l.

Then by the description above of fg
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e, 8) = (yys 8)) * (395 8)) *+ «vo *+ (y» &)
where the g; are given by (5.1). It follows from this and (4.4)
that the map C,(K) — C(P) given on the basis elements by
(0, g ei . g in dimension 2 ; (x, g) l—*ei . g in

dimension 1 , and g g in dimension O , is an isomorphism. [

COROLLARY 1. If P = (X; R, w) <Zs a presentation of a group G

and N s the relation module of P , then the rule

r I—-—>Ze}1{ 6 (dr/9x) induces an injection i: N — @ ZG .
X

Proof. We have identifications

;zc = cl(E) = Hl(El, %) .
The homology exact sequence of the pair (El, EO) gives an

injection j: Hl(il) — Hl(l~(1, EO) . The covering projection
p: K — K induces an isomorphism nl(ﬁl, 1) — N which maps

the class of the edge path (yl, gl) (yn, gn) (as in (5.1)) to

1

L CERERE APE FIK X u X - . The Hurewicz map Tl’l(il, 1) —

HI(EI) thus induces an isomorphism N — Hl('lzl) and the composite

of j with this isomorphism is the map i . [

Corollary 1 may also be proved using the methods of §3.1 of
[Gll . Given a group G , and short exact sequence
1— N—F — G — 1 with F free, Gruenberg constructs a
free G-resolution of Z

v = N2N3 = FN/FNZ — N/N? — F/FN — ZG — Z — 0

in which F 1is the augmentation ideal IF of F and N is the
kernel of the induced map ZF — ZG . If F 1is free on X,

and N 1is the free group on V , then N/N2 and F/FN are free
G-modules on the cosets of the elements 1 -v , veV and 1- x,
x € X , respectively. Thus F/FN is isomorphic to our Cl(P) but

in general N/N2 is not isomorphic to C2(P) . However the map

N — N —> N/FN (which sends n € N to the coset of 1 - n)

induces an isomorphism of abelian groups N —> N/FN , and the map
N/FN — F/FN  is an injection.

COROLLARY 2. Let P = (X; R, w) be a presentation of a group
G, and let K = K(P) be its geometric realisation. Then the

module m of identities for P <{s naturally isomorphic to the
second homology group HZ(K) of the universal cover K of K,
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and hence also to wz(K) » the second homotopy group of K .

Proof. The first assertion is immediate from Propositions 7 and
8, while the second follows from the Hurewicz theorem, since
M) =m,®& . O

The above description of the module of identities as an
absolute homotopy group can be extended to a description of the
free crossed F-module C of the presentation as a relative
homotopy group. The history of this description is as follows.

In his 1941 paper [Whl] , Whitehead attempted an algebraic
description of the second homotopy group ﬂz(K) of a space

K=Lu {ei}peR obtained by attaching 2-cells eZ to a path-
connected space L . He reformulated these results in [Wh2] as a
precise algebraic description of the group nz(K, L) and also
noted that if L 1is a l-dimensional complex, then his description
of nz(K) returned to previous results of Reidemeister [Rel] (see

Corollary 2 above).

A fundamental observation in [Wh2] is that if (Z, Y) 1is any
based pair of spaces, then the second relative homotopy group
nz(Z, Y) has an action of ﬂl(Y) so that with the boundary map

ER n2(Z, Y) — nl(Y) , the rules (CMl), (CM2) hold. (For proofs

of these rules, see for example [Hi] p.39 or [W] .) This led
Whitehead to the definition of crossed module [Wh3] .

For the particular pair (K, L) , where K =1L u {ez}peR as

above, we can obtain elements a ¢ nz(K, L) , given the

characteristic maps hp: (E2, Sl) — (K, L) of the 2-cells e2

together with a choice of paths in L, one for each p , joining
hp(l) to the base point of L . We can now state a theorem from

[Wh3] .

THEOREM 10. The crossed ﬂlL-moduZe ﬂZ(K, L) , where

= 2 :
K=Lu {ep}pER > 18 free on the elements a, , P R .

COROLLARY. If K = K(P) <s the geometric realisation of a
presentation P , then the free crossed F-module (C, 3) of P is

igomorphic, given the identification F = anl , to the crossed

ﬂlKl—moduZe (ﬂz(KZ, Kl), 3); in particular, the module m of
identities of P is isomorphic to nz(K) .0

Whitehead's proof of Theorem 10 uses methods of transversality
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and knot theory - an exposition of this proof is given in [Brl] .
The theorem is also a special case of the generalised Seifert-van
Kampen theorem of [B-H2], sketched in [Br2] in this volume. In
the case L is a l-dimensional CW-complex, a short proof was
given in [Cl] as an application of the relative Hurewicz theorem,
and this method has been extended to the general case in [R] .
For completeness, we give another proof here of the special case,
without using the Hurewicz theorem.

Proof of Theorem 10 for the case L = Kl . Clearly we may assume
K is of the form K(P) for a presentation P = (X; R, w) of a
group G . Let (C, 3) be the free crossed F-module on

w: R— F , as in §3 . Then there is a unique homomorphism

¢: C —> nz(Kz, Kl) of crossed F-modules such that

¢op = a, p € R. Sowe obtain a commutative diagram
0 m = c N > 1
| J
2 .1 .
0 nzK 3 nz(K , K7) > N 1 .

That ¢ 1is surjective is fairly easily proved by a general
position argument which will be given in §10 below (cf. also [W]
and [Brl] ) . The more difficult part is to prove ¢ injective.

We have isomorphisms given previously

-_—.

~ ~ ~]
= & =
C Rzzc HZ(K,K)-

Thus the Hurewicz map nz(K, Kl) e HZ(E, El) determines a map
v nz(K, Kl) — C such that w(ap) = es , 0 € R . 'Hence, the

abelianised maps ¥ , § satisfy ¥ =1 . Let q: C— C ,

Kz, Kl) be the abelianising maps. Then

2 1 -
q': nz(K y K7') — nz(
vq'éi=Voqi=qi
which is injective by Proposition 4. Hence ¢i is injective and
so ¢' is injective. By the 5-lemma applied to the above diagram,
¢ 1is injective. [

REMARKS 1. These results do give precise information on nz(K) s

where K 1is a 2-complex, or equivalently, on the module of
identities for a presentation (X; R, w) ; however they are not
so easy to interpret in practice. Quite a lot of information is
known on relation modules, particularly for abelian groups [G2,
S-D, Wel . See [4, Hu2, G-R] for some results on (K)



170

2. Dyer-Vasquez [D-V] have a different method of comstructing a
complex K(P) of a one-relator presentation P = (X; r) of a
group G . If r is not a proper power, they proceed as above.

q

However if r = z* , where q > 1 1is maximal, then they attach to

Kl not a 2-cell but an Eilenberg-MacLane space

K(Zq’ 1) = st e2 vedu «+s by means of a map st — k!

N JOC

representing . This yields an Eilenberg-MacLane space K(G, 1).
3. If P, P'" are two presentations of a group G , then (see
for example [C-F] , [J] ) P can be transformed to P' by a
sequence of Tietze transformations, which are

I (and I') Add (delete) a generator and relation which expresses
that generator as a word in the other generators, e.g.

2 2 3 -1 2
(X,Y;X =Y3)|'——’(x,y,z;x =y, z=Xx "y x)

I (and I') Add (delete) a relation which is a consequence of
the other relations e.g.

2 3 2 3 4 6
x, ys5x =y ) > (x, ysx" =y, x =y) .
Instead of the transformations II and II ' one can also use the

transformations (cf. [D4, Mel, S1, Wal):

- -1 -1 .
I a Replace a relator r by rw 1sw or rw s 'w where s is ano-

ther relator and w 1is an arbitrary word in the generators.

Ib (and IIb') Add (delete) the relation "1 = 1" (the correspond-
ing relator is the identity).

A transformation IL a is a product of a transformation I and
a transformation I ' . A transformation II (I ') can easily be
written as a product of transformations ILa and Ib(Ib') .

Sieradski in [S1] calls presentations equivalent under the
use of operations I , I' and I a combinatorially equivalent.
(Actually, he used a different, but equivalent, set of operations.)
There are a number of problems in this area. The following is
taken from Problem 5.1 of [K] .

Let K(P) , K(P') be the geometric realisations of two finite
presentations P , P' of a group G . Assume P , P' have the
same deficiency (= number of generators - number of relators).
Consider the assertions:

A)  K(P) = K(P') (homotopy equivalence)
B) K(P) A K(P') (simple homotopy equivalence)

C) K(P) A\ K(P') (simple homotopy equivalence by moves of
3 dimension < 3)
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D) P is combinatorially equivalent to P' .

Then D<= C =>B => A [Wr] (see also [Me 1, 2]) . It is not
known what other relations hold in general. For more discussion
of this and other problems on 2-complexes, see also [Wa2] .

The main results of [S1] and [Mel] give presentations of
finitely generated abelian groups which are not combinatorially
equivalent. The simplest example is the two presentations

5 5
(x, y; xs. vy, [x, y1) and (x, y; xs, ¥y, [xz, yl) of Zg x Z..

The pruaof involved considering the map C(P) —> C(P') of chain
complexes induced by a combinatorial equivalence from P to P'
[Mel] also considers coarser equivalences (allowing also
permutations of the generators).

The presentation P = (x, y; x2y 3, 1) of the trefoil group
G has its module 7 of identities isomorphic to ZG . 1In [D4],
Dunwoody constructs for G another presentation P' , with two
generators and two relators, for which the module =' of
identities is not free. Since 7 and 7m' are not isomorphic, the

spaces K(P), K(P') are not of the same homotopy type. However,
he also proves that T @ ZG = 7 & ZG , and that K(P) v 82 and

K(P') v 82 are of the same homotopy type. Thus 7' 1is projective
and stably free. Other examples of non-free projective modules
over ZG where G 1is torsion free are given in [Be-Dul (for G
the trefoil group made matabelian), but it is not known if these
are isomorphic to the second homotopy module of a 2-complex. Also
by the Corollary on p.l39 of [Wald] , ﬁO(ZG) =0 for G in a

large class which includes (by Theorem 17.5 op. cit.) all poly-Z-
groups, all torsion free one-relator groups, and fundamental groups
of compact, orientable 3-manifolds which are sufficiently large
(this includes for example the trefoil group). Hence projective
modules over such groups are stably free. Many examples of non-
free projective modules over the rational group ring of a torsion
free group are known [Le] , but the existence of these does not
imply such examples exist over the integral group ring. For
further discussion of related problems,see [Bal .

S Peiffer transformations

As before, let P = (X; R, w) be a presentation of a group
G . Let F be the free group on X . The aim of this section is
to give a more combinatorial description of the free crossed
F-module C on w : R—> F . This description, which is
essentially due to Peiffer [Pe], will be useful later.

Recall that we considered in §1 the free group H on the set
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. . u
Y =R xF , with elements of Y written a=p , p e R, ueF .
The combinatorial description of C uses operations on words
rather than on elements of H ; a word in the elements of Y is
written as an n—tuple
i i

y = (a7, «e0s an), where a, = (o, 7) 7, €, = 1, p; € R, u; € F,

for some n > 0 . We shall refer to such a sequence as a Y-sequence,
and shall write 6y for the product (eal) e (ean) in F ,

where, as in §1, 6((pu)€) = u-l(wp)eu . If 6y =1, we call y
an tdentity Y-sequence for P . For example, = -
- -v w W
y=@0% ot 0,0, T
where o, p, T € R and u, v, w € F , is an identity Y-sequence,
and in this case the corresponding element of H is 1 .

In §2 we formed the Peiffer group P of the pre-crossed
F-module (H, 6) as the subgroup of H generated by the Peiffer

elements b—la—lbaeb for all a , b e H. This means that if we

work mod P in H we have the "crossed commutation" rules
-1
ab = baeb, ab = bea a mod P

for all a, b € H. Further, the Corollary to Proposition 3 shows
that these rules for all a , b of H are a consequence of the
rules simply for all elements a , b of Y . Such rules, together

with the rule a a—1 =1, can be modelled on words in Y , by
certain operations which we now explain.

Peiffer operations on Y-sequences:
(i) An elementary Peiffer exchange replaces an adjacent pair

-1
(a, b) 1in a Y-sequence by either (b, aeb) or (bea ,a) . A
Peiffer exchange is a sequence of elementary Peiffer exchanges; we
often abbreviate "Peiffer exchange" to "exchange".

(ii) A Peiffer deletion deletes an adjacent pair (a, a_l) in a
Y-sequence. A Peiffer collapse is a sequence of exchanges and
Peiffer deletions, in some order.

(iii) A Peiffer insertion is the inverse of a Peiffer deletion,
and a Peiffer expansion is the inverse of a Peiffer collapse.

(iv) A Peiffer equivalence is a sequence of Peiffer collapses
and Peiffer expansions, in some order.

REMARK., Operations of this kind are considered in [Pe]l . A
number of authors have used some coarser operations which we shall
discuss later and call simply collapses, expansions and equivalences.
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Given a Y-sequence y , we obtain an element yy of the free
group H on Y by forming the product in H of thé components
of y . By the construction of free groups, Yy = Yz if and only
if Zz can be obtained from Yy by a sequence Of Peiffer deletions
and Peiffer insertions, in some order. The definitions of the
Peiffer group P and the free crossed F-module C = H/P give
immediately:

PROPOSITION 11. Two Y-sequences have the same image in C = H/P
if and only if they are Peiffer equivalent.

For later use, we also give a simple but useful observation
on exchange operations.

PROPOSITION 12. If a Y-sequence z 18 obtained from aY-sequence
y = (al, vees ahg by Peiffer exchanges, then each component of

18 of the form

V.
i
a; for v, € gp{eal, ceey ean} ;

N

in particular, Vi belongs to N , the normal closure of the
relators.

The proof is clear from the definition of Peiffer exchange.
-1 €4
Note that each a, 1is of the form u.lr.lu. s Y. € R , u, ¢ F,
i iiti i i
and so the subgroup of F generated by the eal, ceey ean is a

subgroup of N .

The Peiffer equivalences turn out to be particularly relevant
for a class of presentations called 'aspherical' (§7). The groups
of such presentations are torsion-free. A wider class of groups
and presentations can be discussed using a larger class of
operations than the Peiffer equivalences - for example, in this
way one studies the 'combinatorially aspherical' presentations
(§8); these determine groups among which are one-relator groups,
most Fuchsian groups, and many others. The definition of this
wider class of operations is as follows.

Operations on Y-sequences:

(i) Exchanges will be the Peiffer exchanges as above.

(ii) A deletion is a deletion of an adjacent pair (a, b) in a
Y-sequence in case (8a)(6b) =1 in F . A collapse is a
sequence of exchanges and deletions in some order.

(iii) An Zmsertion is the inverse of a deletion and an expansion
is the inverse of a collapse. (But note that to insert (a, b)
in a Y-sequence we must have not only (6a)(6b) =1 but also

a,beYu Y_1 » so that we still have a Y-sequence.)
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(iv)  An equivalence of Y-sequences is a sequence of collapses and
expansions, in some order.

Clearly Peiffer equivalence implies equivalence; it is useful
to know when the converse holds,

We say that the presentation P = (X; R, w) is redundant if
(i) there is a 1 in R such that wt =1, or (ii) there are
p,0 in R such that p # ¢ but wp is conjugate to wo or to
wo—1 . (If P 1is not redundant, it is Zrredundant.) If P is
redundant, we can find a , b in Y u Y_l such that (6a)(6b) =1

but b = a_1 ; so in this case, an insertion or deletion for a
Y-sequence need not be a Peiffer insertion or Peiffer deletion.

We say the presentation P is primary if for all p € R, wp
is not a proper power. If this does not hold, then, by Example 2
of §1, we can again find an insertion (or deletion) which is not
a Peiffer insertion (or Peiffer deletion).

PROPOSITION 13. Let P = (X; R, w) be a presentation which is
irredundant and primary. Then any deletion (insertion) has the
same effect as a suitable Peiffer deletion (Peiffer insertion),
combined with a sequence of elementary exchanges.

Proof. Suppose given a = (pu)e, b = (cv)n, elements of Y u Y-l,
such that (Ba)(6b) =1 . Let r =wp , s =wo . With this
notation, we have the following lemma .

LEMMA. If P <s irredundant, then p =0 , r=s , € +n =20

-1 ,
and for some me Z, uv = = z" , where z is the root of r .

The proof of the lemma is easy. We are given

£ = uv—ls_nvu—1 . By irredundancy, p =0 , r =s and hence

(since r=z1) ,, e +n=0. So uv—1 centralises r , which
implies the lemma.

Since also P 1is primary, we have further that z =r . So

a = (pu)E , b= (pv)—e with € = #1 , uv_1 =",

We now do an elementary exchange of (a, b) to (al, bl)
u v, €

say, where a; = (p l) , b1 = (p 1) . If |m+ €| < |m| , we use
here the elementary exchange (a, b) ~ (02 , a) and obtain
easily that ulv-]:1 = r-(m+€) . If |m- el < |m| , we use the

elementary exchange (a, b) ~ (b, aeb) and obtain that
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ule1 = @) . Hence a sequence of |m| elementary exchanges
carries (a, b) to an identity sequence (am, bm) with
a = b;l (as elements of Y u Y_l) . This clearly implies the

assertion. [

COROLLARY. Let P = (X; R, w) be a presentation which is
irredundant and primary. Then two Y-sequences determine the same
element of the free crossed F-module C = H/P <f and only if
they are equivalent. [

REMARK. Let P = (X; R, w) be a presentation and let R = w(R),
F = F(X) as usual. It is common in the literature to consider
not the Y-sequences in the above (where Y =R x F) but what we

could call the RF—sequences P = (pl, ey pn) where each 1 is
a conjugate of a relator or its inverse, so that each P is an
element of N = N(R) . If y = (al, ey an) is a Y-sequence,

then G'Z = (eal, ceey Gan) is an R -sequence. We say P is an

identity R -sequence if Py «+e P T 1 in F . Clearly y is
an identity Y-sequence if and only if 6'y is an identity RF-

sequence. It is these identity RF—sequenceswhichare considered
in [L-S] and [C-C-H] . The operations on Y-sequences can be

modelled in RF-sequences. The elementary exch%nges replace an

adjacent (p, q) in p by (q, pq) or (qp ,» P) ; these are
called exchanges in [C=C-H] and Peiffer transformations of the
first kind in [L-S] . The deletions or imsertions delete or

insert an adjacent (p, p—l) . (The deletions are called Peiffer
transformations of the second kind in [L-S], and insertioms are not
considered. Both operations are considered in [C-C-HJ].)

. F .
Equivalences of R -sequences are composites of exchanges,
deletions and insertions, in some order. Clearly the map 6'

F ) ‘s .
from Y-sequences to R -sequences induces a bijection of

. F . .
equivalence classes. However, for R -sequences there is no notion
corresponding to our Peiffer equivalence, and so in general we do

F
not recover the free crossed F-module (C, 9) of P from the R -
sequences. Nonetheless by the last Corollary, we may recover C,

and hence the module 7™ of identities, from the RF—sequences if
P is irredundant and primary.

7. Aspherical 2-complexes and aspherical presentations

A topological space X 1is aspherical if it is connected
and 7m;X =0 for i > 1., Thus for such X the significant
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homotopy invariant is the fundamental group =.X , and for

1
aspherical CW-complexes X the fundamental group determines the
homotopy type of X . (See for example [W].) If K is a
connected 2-dimensional CW-complex, then K is aspherical if and
only if nzK =0.

PROPOSITION 14. Let K = K(P) be the geometric realisation of a
presentation P = (X; R, w) . Then the following are equivalent.

(i) The 2-complex X <s aspherical, i.e. m, K = 0 ,

2

(ii) The module Tt of identities for P <s zero.

(iii) The relation module ﬁ_ of P 1is the free module on the
induced map w: R — N .

(iv)  Any <dentity Y-sequence for P <isPeiffer equivalent to the
empty sequence.

Proof. That (i) and (ii) are equivalent is immediate from
Corollary 2 of Proposition 9. That (ii) and (iii) are equivalent
follows from the Corollary to Proposition 7. Finally, the
equivalence of (ii) and (iv) follows from Proposition 11. [

We now follow [T, S1, C-C-H] in calling a presentation P
aspherical if nzK(P) =0, i.e. if any of the equivalent

properties of Proposition 14 hold. There is another useful
condition for P to be aspherical.

PROPOSITION 15. A presentation P = (X; R, w) <s aspherical if
and only if P <s irredundant and primary, and any identity
Y-sequence for P <s equivalent to the empty sequence @ .

Proof. Suppose first that P is aspherical. We prove that P
is irredundant and primary.

Let pe R. Since mn =0, dzei #0 and so wp # 1 . Let
6 ¢ R and suppose r = wp is conjugate to s =wo , i.e. r=u su
for some u e F . Then the elements p , o of the free crossed

u

F-module C of P satisfy 9p = 30 . Since Ker 3 =7 =0, we

have p =o” in C and so eg = eg . ¢u in CZ(P) . By free?fss
of CZ(P) , P =0 . Asimilar pro$f, with eg replaced by “e
shows that r cannot equal u 1s u .

Suppose now r = 2% where q21. Then r = z-lrz . The

above proof shows that ei = ei .9z and so ¢z =1 . Hence
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N
]

da for some a € C. Then 0dp = Saq . Since Ker 3 =0,
p = al and therefore in CZ(P) s eg is divisible by q . Since

eg is a basis element for CZ(P) , we have q =1 .

This completes the proof that if P is aspherical then it is
irredundant and primary. The remaining assertions of the
Proposition follow from the Corollary to Proposition 13, and
Proposition l4. [J

8. The identity property

In this section, we present a property of a presentation first
described by Lyndon in [L1] and later called the identity property
by Papakyriakopoulos in [P2] . This property provides a useful
characterisation of those presentations which are irredundant and
for which any identity sequence is equivalent to the empty
sequence. In this section, we abbreviate 'Y-sequence" to "sequence'.

DEFINITION, Let P = (X; R, w) be a presentation, and let

y = (al, PR an) ,» where each a; = (pil) . » Py € R, u; € F,

-~

€ = t1 , be an identity sequence for P . We say y has the

identity property if the indices 1, ..., n can be grouped into
pairs (i, j) such that p; =P s € tEL S 0 and, if z; is

J J
the root of r, = wpi , then for some m, € /4
m,
i
z; uj mod N . (8.1)

u.
1

We say y has the primary identity property if it has the identity
property but with (8.1) replaced by

ug = uj mod N . (8.2)

We say P has the (primary) identity property if every
identity sequence for P has this property.
PROPOSITION 16. Let P be a presentation and let y be an
identity sequence for P . -

(i) If y has the identity property then y 1is equivalent to
the @mpty sequence. -

(ii) If y has the primary identity property, then y isPeiffer
equidalent to the empty sequence. -

Also, the converse to (ii) holds, and the converse to (i) holds if
P is irredundant.

Proof. (i) By exchanges we can transform y to z which again
has the identity property but with adjacent indices paired. Thus
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we can write z = (b!, b bé, b2, «es) where

~ 1 t]
' ui € v, e , o,
b: = (Oi ) b, = (pi ) and ui =z, u.v,
where zi centralises ri = wpi , and v, belongs to N . Let
Uivi &i
c; = (oi ) © . Then eci = ebi , and so by deletions and

insertions we can transform z to W = (cl, bl’ Cy» b2’ cee)
Now v, = Bhi for some hi in the free crossed module C of P.
Hence the product

_ =11 -1 -1

w = C1b1c2b2 cee = h1 bl hlbth b2 h2b2 ... € [C, C] .

But y is an identity sequence, so 9w =1 , By Proposition 4,
w=1 in C . By Proposition 12, w is Peiffer equivalent to
¢ . Hence y 1is equivalent to @ .

(ii) This is proved as for (i), but with c; = bi , so that y 1is

Peiffer equivalent to W and hence to @ .

The converse to (ii) holds, since the empty sequence has the
primary identity property, and this property is preserved under
Peiffer equivalence. A similar reasoning gives the converse to
(i), if P 1is irredundant. [

We now give another characterisation of the identity property
for an identity sequence. This will lead to a characterisation of
the identity property for a presentation in terms of the structure
of the module of identities or, equivalently, the structure of the
relation module.

Let P = (X; R, w) be a presentation of a group G . Recall
from 8§81, 3 and 5 that we have exact sequences

1—>E—+H9—>F—‘t—*c—»1,
1—P—H—C—1,
l1—P—E—m1—1,
1]— 17 —C—N—1,
l1—s 1 —>C— N—1

’

the last of which identifies the module m = E/P , of identities

for P, with a submodule of C = CZ(P) , the free Z G-module with
. 2

basis {ep o € R} .

We now construct a module associated with the roots of the
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relators of the presentation P . Let P be the normal closure in
H of the Peiffer group P together with the elements

(D(Dz)-l)u ueF ,peR

where 2z 1is the root of wp . Notice that P 1is an F-subgroup of
H and lies in E . Hence P/P is a G-submodule of 7 and the
injection m — C identifies P/P with the submodule M of C
generated by the elements

ei . (L-¢z) ,peR.

We call this submodule the root module of P .

PROPOSITION 17. Let y = (aj, ..., &) be an identity sequence
for the presentation P. Then the following conditions are
equivalent.

(%) y has the identity property

(it)  The element y = a,... a belongs to P .

(ii1) The image y of y in C <s an element of the root
module of P .

Proof. That (ii) <= (iii) Zfollows from the identification of B/P
with M .

(i) = (iii) The pairings given by the identity property imply that
y is a sum of elements of the form

+
ie§ 1= ¢z_m) du

where u € F , z 1is the root of wp and m > O . The rules
(L= 02 = (L= 0201+ ¢z + o + 02" )
(1= 92 =-(1 - ¢z (92 )

now imply that ¥y belongs to the root module of P .

(ii) => (i) We are given y € P . Then the image y of y in
is also the image of an element P19 -+« Pgdy of P where the

p;» 4; are respectively of the form (pu)e’ (pzu)—e where u € F,

€ =*1 and z is the root of wp . So y 1is Peiffer equivalent
to the sequence (pl, 915 ss+s Py ql) . “This sequence has the

identity property, and this property is preserved under Peiffer
equivalence. Hence y has the identity property. [
COROLLARY. Let P = (X; R, w) be a presentation of a group G .
Then the following are equivalent:

(7) P has the identity property.

(72) P s irredundant, and each identity sequence for P <s
equivalent to the empty sequence.
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(iii) P <s Zrredundant, and the root module of P coincides
with the module of identities for P .

(iv)  The relation module N of P decomposes, as a Z G-module,
into a direct sum of cyclic submodules Np, p € R, where
each ﬁp is generated by the image r 1in N of the
relator r = wp , subject to the single relation

r. (1-¢@)) =0,
z betng the root of r. 0O

Since (i) and (iv) clearly imply P irredundant, this is
immediate from previous results. Notice that condition (iv) says
simply that the map d,: CZ(P) — Cl(P) determines its image N

as the quotient of CZ(P) by the root module M of P , whence

it is clear that (iii) and (iv) are equivalent. Furthermore, it
is straightforward to check directly that the identity property
implies (iv) .

REMARK 1. Proposition 17 seems to be new. The fact that the
identity property for P implies condition (iv) was indicated in
[L1] ; that (iv) implies (ii) is due to Huebschmann [Hu3] . 1In
[Hu2] the determination of the module of identities as what we
have called the root module is given. A proof that (iv) implies
the identity property does not seem to have been given in the
literature.

REMARK 2., Various other notions of asphericity for apresentation
P are considered in [C-C-H] . These are as follows:
(DA) P is diagrammatically aspherical if every identity

RF—sequence over P can be transformed to the empty
(identity) sequence by collapses.

(sA) P 1is singularly aspherical if it is diagrammatically
aspherical, irredundant and primary.

We note in passing that, in view of Propositions 13,14 and 15, P
is singularly aspherical if and only if every identity Y-sequence
over P can be transformed to the empty sequence by Peiffer
collapses.

For the next two definitions, note that for any presentation

A A A
P=(X; R, w) , we can find a subpresentation P =(X; R, w) of the
A A

same group, with R contained in R , w equal to the restriction

A A
of w , and such that P is irredundant. We call P an
irredundant part of P .
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(CA) P 1is combinatorially aspherical if, for no peR, wp =1
€ F and if P has an irredundant part satisfying one (and
hence each) of the four equivalent conditions of the above
Corollary.

(CLA) P is Cohen-Lyndon aspherical if, foX no o ¢ R, w =1€F
and if P has an irredundant part P = (X; R, Q) such that
the normal closure N = N(R) = N(ﬁ) of Q(ﬁ) and w(R) in
F has a basis

B=UV {uru-1 s ue U(x)}

R

A
where, for each r ¢ R, U(r) 1is a full left transversal
for NC(r) , C(r) being the centraliser of r in F .

We note that the definitions given in [C-C-H] differ from the
above ones (but are, of course, equivalent).

These notions are linked by the implicatioms

SA = Agpherical

|

CLA » DA > CA

and are studied extensively in [C-C-H] . The homotopy type of the
geometric realisation of a combinatorially aspherical presentation
is determined in [Hu2] . In [C-H], diagrammatically aspherical
presentations are studied from a geometric point of view, and a
consequence of the main result in [C-H] is that small cancellation
presentations are diagrammatically aspherical. This was claimed
(though in a different terminology) in the proof of Theorem II of
[L4], but the proof is not correct.

9. Examples and an unsettled problemof J.H.C. Whitehead.

We now consider examples from §1 in the light of later
sections. As explained in §6, for non-primary presentations we
must distinguish between Y-sequences and R°-sequences, and thus
the intuitive terminology of §1 is not accurate. In the case of
presentations which are irredundant and primary, the distinction
between the two kinds of identity sequences is not crucial.

Example 3 of §1 was an identity between six commutators
in the generators x, y, z . Suppose for precision that the
presentation is irredundant with set R of relators consisting
solely of the commutators [x, yl , [y, z] , [z, x] . Then we have

the identity Rr-sequence over P = (x, y, z; Ty Ty r3)
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p=(rp ) T3 ri’ r5, Tg)
where r, = [x, y1, r, = [x, z], ry = Ly, z] , r, = [y, x1 ,
- -1

=r =r. ,

17 %% %277
Note that x , y , z do not belong to N(R) . So p

ry = [z, x] , re = [z, y] . So we have r

=r1
3 6

does not have the identity property and (since P is irredundant
and primary) we may deduce that p represents a non—trivial
element of the module w of identities.

r

Example 4 of §1 was an identity among relations for the

standard presentation of ZZ xZ, . This presentation is not

primary, so we must deal with Y-sequences, and the identity Y-
sequence for this example is

Xy

p=(o, 1,07, (¢"HY, o7, «"HF)

’ ’ b

where p, 0, T are elements of R mapped to r , s , t . Note
that Xy ¢ N(R) , so that p does not have the identity property.
Hence the corresponding element of C

2 2 2 ~r
e (1= ¢y) +e (0(xy) - 1) +e (1~ ¢ (xy))
does not belong to the root module; this may be verified directly.

In Example 5 of §1 (which illustrates an identity for the
standard presentation of the symmetric group S3) , the relator t

occurs three times, and so the corresponding identity sequence will
not have the identity property.

An important theorem of Lyndon [L1] is that any one-relator
presentation has the identity property. In particular, if
P = (X; r) 1is a one-relator presentation, and P is primary,
then P is aspherical. Another proof of this result is given by
[D-V], who also construct other examples of aspherical spaces. In
particular, they solve a problem of Papakyriakopoulos [P2] in
showing that if P 1is the presentation

n
(ar b, xl’ Yl. ceey xnp yn; [a, bl I [xi, y1], [a, btl)
i=1
where T belongs to the commutator subgroup [FX, FXJ], then P
is aspherical; the proof is a delicate combination of rewriting
arguments and covering space techniques.

Lyndon's theorem is often called the Simple Identity Theorem.
A geometric proof of a stronger theorem is given by Huebschmann in
[Hull; it uses "pictures" (which are described in the next sectiomn).

A stronger result again is that a one-relator presentation is
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CLA (§8). This result is due to Cohen-Lyndon [C-L] and is
reproved in [C-C-H] .

A deep geometric result of Papakyriakopoulos [P1] (the sphere
theorem) implies the asphericity of certain presentations of the
groups of knots and of links. Here a link group is the 3
fundamental group of the complement of a tame link L in S~ .
The link L 1is called geometrically unsplittable if there is no

embedded pL 2-sphere 82 in S3\L such that each component of
S3\S2 contains points of L .
THEOREM [P1] : If L s a link in S°, then S\L s
aspherical if and only if L <s geometrically unsplittable.

Now the link group G = nl(S3\L) has the Wirtinger
presentation P = (xl’ sees X3 T, eee, rm) coming from an

oriented diagram for L , with generators Xys eeey X, ODE for
each overpass, and for each crossing

Figure 3

a relation x}llexkxi =1 (corresponding to a deformation

between the two dotted paths shown in Fig. 3). There is always an
identity among these relations, corresponding to a loop drawn right
round the diagram of the link. So we have a presentation
P' = (xl, cees X3 Ty, e, rm—l) of the same group. An

implication of Papakyriakopoulos' theorem is that P' is
aspherical if and only if L is geometrically unsplittable. In
particular if L is a knot, then P' 1is aspherical. For this
asphericity of knots no purely algebraic proof is known.

In [C-C-H] it is proved, without using the sphere theorem,
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that the group of any tame graph has a CLA presentation correspond-
ing to a handle decomposition of the exterior space. An immediate

consequence is the asphericity of geometrically unsplittable tame
graphs.

The asphericity of knots could be easily proved if one knew that
the primary identity property is hereditary, i.e. is inherited by
subpresentations. Here if P = (X; R) is a presentation, then a
subpresentation is a group presentation P' = (X'; R') for which
X' <X, R' <R . Of course the group G' of P' may be quite
different from G . However it is not even known if the primary
identity property is inherited by P' in the case when X' =X
and R has one more element than R' ; indeed the general finite
case would follow from the special case.

The way the asphericity of knots could be deduced from this
result is as follows. Add to the Wirtinger presentation of the
knot the extra relation Xp . Geometrically, this corresponds to

cutting the knot at the overpass x The knot can then be untied.

1
This corresponds to a combinatorial equivalence:

(xl, ces X5 Tys e T, xl) ~ (xl, ces X5 Xy, ee, xn) .
Such equivalences preserve the module of identities, and the last
presentation clearly has trivial module of identities.

The question of the hereditability of the primary identity
property is equivalent to a famous question of Whitehead, raised
in [Whll: <s every subcomplex of a 2-dimensional aspherical
complex aspherical? This seems a very difficult question: work
has been done by [A, Be, B-D, C2, Co, H, Hul, P2, S2, St] .

The problem is equivalent to the following. Let L be a
connected 2-dimensional complex with nzL #0 . Let K be formed

from L by attaching a set of 2-cells. Is it true that nZK #07?

(For, it is easily seen that attaching any set of O-cells or
l-cells leaves LY non-zero.)

Adams [A] shows that the condition that L be 2-dimensional
is essential here. He sets L = (S1 v Sz) % e3 ; here ™ is
infinite cyclic generated by =z say, nsz is isomorphic to the
group ring of Z and f represents the element 2 - z of this

group ring., Let K =1L u e2 , where g represents the class z .
g
Then n2K =0 but w L 1is isomorphic with the additive group of

2
. n .
fractions m/2° , and so is non-zero.

Another possible generalisation of the question is: can L
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of an n-complex be killed by attaching n-cells? This is easily

settled if n > 2 . For example if K = B3 v E3 and L is the 3-

subcomplex L = 1:33 v E3 , then 1r3L =7Z but 1r3K =0 . Thus the
question is very much a two-dimensional one, and its difficulties
are connected with our lack of understanding of crossed modules,

and in particular, of free crossed modules.

In the next section, and in [St], geometric reasons are given
which indicate the complexity of the problem.

The book by Lyndon and Schupp [L-S] uses the term aspherical
in various senses. In referring to the asphericity of knots
(p.162) the term is used in the sense given above. On p.l57,
the term is used to mean, in our terminology, that any identity

RF—sequence collapses to the empty sequence @ , i.e. that the
presentation is diagrammatically aspherical. However, the

presentation (x; x2) of the group Z is diagrammatically

2
aspherical but not aspherical. Further, it is not true that for
any identity sequence y ,'y 1is equivalent to @ " implies'y
collapses to @ ", nor Is it true that "y 1is Peiffer equivalent
to @ '"implies"y Peiffer collapses to ¢ ". Examples of this
type of phenomendn were given in May, 1978, by J. Howie and by

P. Stefan (private communications); later examples were given by
I. Chiswell [C-C-H] and by A. Sieradski [S2] for aspherical
presentations. Stefan's example is given elsewhere in this volume
[St]; Howie's example is the identity sequence

¢ = ([x, yl, [x, 20, [y, 21, [y, x1%, [z, x], [z, y15)

for the presentation P=(x,y, z;(x, yl, Ly, 2], [z, x], x,¥, 2)
of the trivial group. It is easy to see that there must be a
Peiffer equivalence of ¢ to @ (for example, we can check that
¢ has the primary identity property); a "diagram" for such an
equivalence is given in Section 10. However, there is no Peiffer
collapse of ¢ to @ since, by Proposition 12, exchanges on ¢

turn [x, y] and [y, x1% to [x, y]u and [y, x1"7 respectively,
where u has even length and v has odd length, so that this

pair can never be deleted after other exchanges or collapses.
Chiswell's example is the sequence

-2 -1 -1 -1 -2 -1 -1
(v "xyx, (yx) "x “(yx), yxy , y(y “xyx) 'y )
for the presentation (x, y; y-zxyx, x) of the trivial group.
10. Links and pictures

Let K be a two-dimensional CW-complex. In this section we



describe some geometric representatives of elements of

ﬂz(K , Kl, a) , and of homotopies between these representatives.

Suppose the 2-cells of K are indexed by a set R . For

each 2-cell ei choose a small disc dp inside it. Let fp be

the attaching map of eg , and choose a path tp joining a point

-————
-

Figure &4

Y, of dp radially to fp(l) , and then joining fp(l) in k!

to the base point a of K . The characteristic map for eg
and the path tp together determine an element ap of

1
TTZ(K,K,a), peR.

Let a € ﬂz(K , Kl, a) . Then a 1is a homotopy class of

maps Kk: (E2, Sl, 1) — (K, Kl, a) . It is a consequence of
transversality theory (for more details of which, see [B-R-S],
Ch. VII) that o contains a representative k such that for

each 2-cell ez of K , k—l(dp) (where dp is as above) is a

finite disjoint union of discs 69’1, 60’2, ‘oo e;ch of which is
mapped by k homeomorphically to dp . (Since E” 1is compact,
k_l(ei) is non—empty for only finitely many 2-cells eg .) For

each i, let x . be the unique point of §_ . such that
p,i p,i

k(xp,i) =Y, and in E2 join each x4 to 1 by a path

S,,1 so that the various s i meet each other only at their
t] ’

final point 1 , and meet the union of the discs & only at their
initial point. Now relabel the 6§ . ,s . as 6, , s, , taking
Psl 5, sl J J
the paths in order around 1 , and let ep be the cell of K
containing k(Gj) . The path -t, +k(s,) misses the centres of
all e§ ; it therefore can be defo%med radially off each eg
1

into K, so determining a class ug in nl(Kl, a) .

186
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Figure 5

Let €5 be *1 according as k maps Gj in an orientation
. . 2 . .
preserving or reversing way to e, (the orientations of the

2-cells of K are determined by Jthe characteristic maps and an
orientation of the standard 2-cell). Then we have an element
€1 Y e u

c=1(;) " ... (pnn)

n

of the free crossed T (Kl, a)-module C .

1
Let ¢: C —-ﬂ»nz(K , Kl, a) be the map of crossed ﬂl(Kl, a)-
modules such that ¢(p) = ap, p e R (cf. §5) . Then if o,k ,c

are as above, the homotopy addition lemma in dimension 2 implies
that ¢(c) = o . This explains why ¢ 1is surjective, a fact used
in our proof of the special case of Theorem 10.
Suppose now that F: (E2, Sl, 1) x I — (K, Kl, a) 1is a
homotopy such that F0 ’ Fl satisfy the properties of the map k

above. Then F may be deformed rel E2 x I to amap G so that
for all p e R, G-l(dp) is a disjoint union of solid tubes

§ x I and solid tori & x 81 (where & 1is a 2-disc), so that G
restricted to one of these is projection to & followed by a
homeomorphism to dp . As pointed out in [S2], the union of these
§ xI and § x S1 for all ei is a framed link in E2 x I .

The use of this idea by Whitehead in [Whl] (cf. [Brl]) suggested



to Stefan and to Sjieradski [St, S2] a geometric interpretation of
Peiffer moves. We illustrate the method using slightly different
conventions to those of [S2, St] . (R. Peiffer has informed us
that Reidemeister was aware of this interpretation.)

( X

Y,

y

~
!
. X

[

o

xyl [xzV [yz] Lyx)* [zx] [zyl®

Figure 6

EXAMPLE: The above is a labelled, oriented link diagram with six
"feet'. Not all the labels have been inserted, because the
remaining ones can all be deduced from the rules :

a

b\/i d e
B=3ba 1 ‘l
d g’

(i) (ii) (iii)

The labels are to be conjugates of relators, considered as elements

of the free group FX on the generators. With this convention,
the above diagram is consistent, in that no overpass has distinct
labels in FX ; the checking of this is left as an exercise to the

188
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reader.

The diagram determines an equivalence of ¢ to @ for the
presentation P = (x, y, z; [x, yl, [y, 21, [z, x], %, y, z) of
the trivial group, where ¢ 1is the identity sequence given at the
base of the diagram. Successive identity sequences in this
equivalence are found by horizontal cuts of the diagram, at
different heights and in general positions; the identity sequence
corresponding to a cut is read off by rules (ii) and (iii) . (The
diagram is a simplification by R. Brown of a diagram of an
equivalence of ¢ to ¢ with about 100 crossings, drawn by
J. Howie.)

The reader will note the appearance of the Borromean rings in
Fig. 6. They appear for a similar reason in [F-T]. The reader is
invited to try and find an equivalence of ¢ to @ for which the
corresponding diagram has the inserted x, y, z less subtly
linked.

The above diagram is a partial representation of a null-

homotopy G: (Ez, Sl, 1) x I — (K, Kl, a) . We have drawn only

the centre lines 0 x I , 0 x S1 (where O 1is the centre of §)
of the components of the framed link, and the link itself takes

account only of the 2-cells of K and not the l-cells. Rourke
in [Roul has developed the above use of what is essentially
transversality to give a more detailed description of maps

ks (E2, Sl, 1) — (X, Kl,a) in terms of "pictures'". We explain
the idea for those 2-complexes that are geometric realisations of
presentations.

Consider the presentation (X; R) = (x, y; r, s, t) of the

trivial group, where r = x2y, s = y—lx, t =x. Let K =K(X; R)
be its geometric realisation, with vertex a . Here is an example

of a "picture" of a particular map k: (Ez, Sl, 1) — (K, Kl, a)
with k(s') = {a}

Figure 7
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The constituents of such a picture over a presentation (X; R, w)
are:

(1) a disc D with boundary 9D ;
(ii) disjoint discs A, 815 Doy veey An inside D , each labelled

by an element of R or, in the case of an irredundant
presentation, by a relator;

(iii) disjoint edges e, €15 eees € inside D and outside the

A's ; each edge is either a circle, or joins the boundaries
of two of the discs in (i) or (ii) ; each edge has a normal
orientation, indicated by a short arrow meeting the edge
transversally, and is also labelled by a l-cell of K1
(identified with a generator of ﬂl(Kl) )

(iv) base points, indicated by a dot, on the boundaries of D and
of each of the A's , but not lying on any edge.

The one further condition imposed is that starting from a
base point of some A and reading the oriented edges round A in
an anticlockwise direction should give the relator, or its inverse,
labelling that disc.

A picture is called spherical if it has no edges meeting 9D ;
so the picture of Figure 7 is spherical.

Any picture over a presentation (X; R, w) determines some
Y-sequences over (X; R, w) and if the picture is spherical these
Y-sequences are identity sequences. We illustrate this process
first for the picture of Figure 7.

For each A draw a line from the base point of A to that
of D so that these lines cross the edges transversally and meet
only at the base point of D . This gives for example, the next
figure:

Figure 8
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To each dotted line o we can associate a symbol (pu)E . Here

p is the label of the disc from which o starts. This disc also
has a sign ¢ which is +1 or -1 according as reading anticlock-
wise round the disc, starting at the base point, gives wp or

(wp)_1 . The element u of F is the product of the labels of
the edges that o crosses, taken in order from the initial disc
of o, and with a sign +1 or -1 according as o crosses the
edge in a positive or negative normal direction.

The dotted edges have an order, obtained by reading them
anticlockwise round the base point of D . From this order, and
the associated symbols, we obtain a Y-sequence. This gives for
Fig. 8 the identity sequence:

y = (rx, sx, s—l, r-l) .

The Peiffer transformations now have the following
interpretations. A Peiffer insertion, e.g.

x x _-1 -1 -1 x x -1 _-1
y=(@,s,x ,r )=t ,t,r,s,s ,r ) =2
corresponds to introducing in Fig. 8 a new component with only two
discs as indicated in Fig. 9 (where we now omit to draw 3dD) :

Figure 9

Conversely, we can carry out a deletion on Fig. 9 . (A general
description of insertions and deletions is given later.)

An elementary Peiffer exchange, e.g.

_1 —1 - - - -
(t 7, t, rx, sx, s T, r 1)}-—-*-(t 1, r, t, sx, s 1, r 1)
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corresponds to rechoosing two successive lines from base points of
discs A to the base point of D . In our example, the result is
indicated in Fig. 10.

Figure 10

Hence a Peiffer exchange corresponds to rechoosing the paths from
the base points of the A's to that of D .

The identity sequence y = (rx, sx, s—l, r_l) given above is
P. Stefan's example [St] of an identity sequence that is Peiffer
equivalent to @ , but does not collapse to @ . However, by an
insertion y 1is transformed as above to z , and z does collapse
to ¢ [stl”.

We now return to Examples 4, 5 from §1, and show further how
to obtain pictures from which we can ''read off" the corresponding
identity sequence.

EXAMPLE 4. Let K be the realisation of the presentation

(x, y; r, s, t) of 22 x Zz given in §1, and let K be the

universal cover of K . The l-dimensional Cayley complex given in

Fig. 1 is the l-skeleton il of K , and the labels of the edges

determine the covering map El — K1 . Using Fig. 1 we can regard

il as contained in §2 (taken as a disc with boundary identified
to a point), and the map il — K extends to a map f£f: 52 — K2
in which the regions in which E; divides S2 are mapped to the
labelled cells, the outside of El being mapped to t_1 . This
map corresponds to a spherical picture which arises in essence as

dual to the Cayley complex. This picture is given by the thick
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lines in Fig. 11; the thin lines give the Cayley diagram, the dots
denote base points, and the dotted lines are used to determine a
Y-sequence from the picture, as described earlier. The resulting
Y-sequence is precisely the identity sequence given in §1 .

e

f
[
I /
| ! !
; -—
| : A
| x| ! E
[ § \
X | r A (t) I Ax
i < =
' .~ ~J_ ~4 [
| B N h \
|
[
!
|
\
\

N |

Figure 11

EXAMPLE 5. In this example we give only the picture corresponding
to the Cayley diagram, together with the dotted curves which
determine the corresponding identity sequence.



Figure 12

We now sketch the ideas of '"deformations' of pictures, which
correspond to homotopies. These are:

(p1) Removal of edges which are loops enclosing no discs or
edges e.g.

194
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(D1') Insertion of such a 'floating circle'.

(D2) Bridge moves:

(D3) Removal of a 'floating component' enclosing no other discs
or edges, such as

<=

(p3Y) Reverse of (D3) .

The operation (D3) corresponds to a Peiffer deletion, but may
be applicable only after a sequence of bridge moves.

These pictures and deformations are exploited by Rourke [Roul
and Huebschmann [Hull] .

In particular, [Hull] uses them to give examples of aspherical
2-complexes for which every subcomplex is aspherical. No such
families were known before.

The hereditability of the primary identity property, which
was discussed in the last section, can be expressed in terms of
pictures and deformations as follows. Let (X'; R') be a sub-
presentation of the aspherical presentation (X; R) . Let P be
a picture for an identity sequence y for (X'; R') . Since
(X; R) 1is aspherical, there is a sequence of deformations
P }— Py = .ot b= P = ¢ , which may involve moves (D1') or

(D3') using edges labelled by elements of X\X' , or discs labelled
by elements of R\R' . The hereditability of the primary identity
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property would imply that there is also a sequence of deformationms
P |— P/ I ... = P! =@ involving labels only from X'
and R' .

As one final indication of the difficulty of the area of the
homotopy theory of 2-complexes, we mention that Reidemeister's
paper [Rell, giving an algebraic description of ﬂz(K) , was

published in 1934, Fifty-five years later, there still does not
seem to be available a general way of calculating nz(K) as a

nl(K) module even if wl(K) is some reasonably small finite

group G . A simpler question might be to ask: which complex
representations of G arise as WZ(K) ® C for some geometric

realisation K of a finite presentation of G ?

The history of the methods described in this article is
complex, and is to some extent shown by the references given
throughout. In effect, the use of the chains of the universal
cover is due to Reidemeister [Rel] . His work and that of his
students developed in Eilenberg-MacLane's work on complexes with
operators, and, in the hands of J.H.C. Whitehead, into simple
homotopy theory and what is now termed algebraic K-theory. Coming
to the present field, we should mention the paper [Schl], which
contains the result of our §5 that Im d2 = N . Note
that the description of d2 in terms of the free differential
calculus is given in [Fo] . An equivalent, and earlier,
formulation is due to Whitehead, in that Theorem 8 of [Wh3] gives
a clear and complete description of the relationship between a
free crossed module over a free group and the associated chain
complex.

There are two useful generalisations of the embedding of the
relation module N into the free module § Z G . One of these,

described lucidly in [Cr], assigns to any exact sequence of groups

l1—N-—T 4,6 — 1 an exact sequence of G-modules
O— N—D — IG — 0 (This is in fact Satz 15 of [Sch].)

Another is the Magnus embedding of a free group into a matrix group
[Mal; this is applied in [Bl, D21 and an account of the
generalisation to the case of a homomorphism ¢: I' — G , is given
in [Bi] §3.2, where further references may be found.
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SUMMARY OF NOTATIONS.
P = (X; R, w) 1is a presentation of a group G . The sequence
1——>E——>H—6+FLG-——>1
is exact where H=F(X xR) , F = F(X)

The Peiffer group P 1is normal in H ; N =1Im 6 . There is a
diagram of short exact sequences

|
|

-
o o A ] 4 g ——
= O < T = g —
=z
-

|
!

The free crossed F-module C 2, F 1is isomorphic to

nz(K, Kl) — nl(Kl) where K = K(P) .

There is a diagram of G-modules, with exact rows:

0 > > C —~ N — 0

114

i i 1injective

® ZLG ——— & ZG ZG

[}
(13
173

Cy(K) ——————— ¢ (K) ————— C((K)
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Wote addea in prooy’:  X. Igusa in a preprint on '[iue generalised
Gréssman invariant' also has described pictures like tnose of §1U
and aas gsed taese for giving an explicit description of the exotic
element in ;\3(2) = 1-13(St(l)) = 24‘43 .



On Peiffer transformations, link diagrams and a
question of J. H. C. Whitehead

P. STEFAN

Introduction by Ronald Brown.

Whitehead's famous question: 1is every subcomplex of a
2-dimensional aspherical complex aspherical? was discussed at
Bangor in March, 1978, during a visit of Johannes Huebschmann.

He suggested a possible approach to this question, but doubts were
raised about this in May, 1978, in a letter to me from Eldon Dyer.
Peter Stefan then pinpointed precisely the failure of the proposed
method, by finding an example of an identity sequence which was
equivalent to Peiffer transformations to the empty sequence @

but which did not collapse to @ . He sent the example to several
people, and Roger Fenn in replying explained the method of pictures.
Peter wrote to Roger on 17 May, 1978, and circulated this letter.
Peter died in a mountaineering accident on June 18,

This note contains Peter's example, and the major part of
his letter, omitting some irrelevant matters or outdated points.
The article "Identities among relations' by R. Brown and
J. Huebschmann, in this volume, and referred to here as [Br-Hul],
is intended to give the background required for understanding this
note, and so some of Peter's notations, conventions and diagrams
have been changed to make the two articles consistent. Other
changes are few and minor. References here other than to [Br-Hul]
are to the bibliography of that article.

1. A Peiffer trivial identity sequence which does not
collapse.

Consider the presentation (x, y; r, s, t) of the trivial

group in which r = x2y y 8§ =Y 1x , t =x . Consider the identity
sequence
x x -1 -1
u=(",s,s8 ,r ).
CLAIM. There is an equivalence of u to @, but u does not
collapse to @ .
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. 3 . .
Proof. Note first that rs = x° which commutes with x . So we

have Peiffer transformations (where 2 denotes a—l)

-1 -1 -1 -1 - - -1 -
@S s L b LS s L e sSsTh e
-1 -1 - - -1% -1

e s, s Lrh s, s LS e h

- -1 -1 5% -1 -1 3% -1 5%
> e, s, s L L’ (e hr, e LS e e85 .

~ -3 . . . . .
However sr = x . So this last identity sequence is equivalent
to @ , and we have an equivalence u A @ .

To prove that u does not collapse to @ , note that the
presentation is irredundant and primary. In order to obtain a
collapse, we must perform Peiffer exchanges on u to obtain ¥

of the form (rxa, r—b, ch’ s—d) where a, b, ¢, d are elements
_ X X -1-1.2 _2 -1

of the group Q = gpir", s”, r, s} = gpixyx, s 'y x°, x"y, y "x}

by , x2y} . Now the centraliser C(r) = gp{r} c Q

xa
r

3 -1-
= gplx", x 7y
and Q does not contain x . Hence xQ n C(r) = ¢ . But

cancels with r-b if and only if xab“1 € C(r) , which we have just
shown impossible.

2. On Peiffer transformations, and link diagrams.
(Extract from a letter to Roger Fenn.)

The example given before, of a trivial identity sequence
which does not collapse, arose in the following way.

The first example to try is (x; x2) , but this does not
work on the algebra level. The point is you are working in

F =F(&x, y, +..) and so r® and r cannot be different if they
are given by the same word. In fact any identity sequence

(ru, sV) (r, s € R, u, v € F) collapses by definition of deletion:
you are allowed to delete an adjacent pair which cancels in F .

b c

So you need at least (ra, S , T, sd) and you also need r not

conjugate to sil because Lyndon proved that a presentation with
a single relator is necessarily aspherical in the strong sense
that every identity among the conjugates of one relator actually
collapses to @ . (This is a difficult theorem - see Proposition
10.6 and its proof on p. 160 and also the remarks preceding
Proposition 11.1 on p. 161 in [L-S] [see also [C-C-HIJ.)

Trying (x; x2) = (x, ¥3 xy-l, yx) fails on this conjugacy
condition, so the next simplest thing is to try (x; x3) =
(x, y; x2y, y—lx) and that works.
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X
If I understand your letter correctly, r and r can
represent a different element of 7,K even when equal in F ,

2
which shows that Lyndon's 'Peiffer machine' is a bad model for
ﬂzK . [This point is about the distinction between Y-sequences

and RF-sequences: see §6 of [Br-Hull.

A bad thing about our examples is that they seem to depend
heavily on the presence of torsion in

mK =G (X; R) .

On the other hand nzK = 0 =>K = K(G, 1) = cohomological
dimension of a subgroup is less than or equal to that of the group,
and Zn has cohomological dimension « ,

I like very much your description of homotopies in terms of
bridge moves, but your strip in the first letter can be shortened
a bit - only one insertion is needed:

These bridge moves occur in my Peiffer moves as follows:
(t-{ s, t,s_k r—l) (a and b; (t_{ r,s,s_l,r_l,tsr) collapsg é.

I have a different way of drawing pictures of such homotopies
which is simpler but much less useful as it does not carry as much
information as your method. Essentially, one ignores the edges of
your graphs and worries only about the vertices [i.e. the discs].
This is inspired by Whitehead's approach to WZ(X, XO) where
X = XO U (2-cells) . A neat exposition of Whitehead's proof that
n2(X, XO) is a free crossed nlxo—module has been written out by

Ronald Brown [Brl] . Essentially, the construction is exactly the
one explained to me by you and Colin Rourke, except that one does

not worry about Kl and looks only at the pre-image of the mid-
points of the 2-cells. So the homotopy is represented by a kind
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.t

I (b)

I (c)
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of "linkage"; the relatiomship to ™ is not visible, but somehow
it did not matter to Whitehead.

There is a completely formal way of getting these linkages out
of the Peiffer moves: the two exchanges are represented by

b

bf/\/j - X

(the line in front represents the element which does not change).
The insertions and deletions are represented by

VIR

and one reads the diagram upwards. For example, the sequence

o 85 ) el X85, s v ... — 8 of 51

is given by
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The obvious elementary moves are clearly allowed such as
s’ N 7 ~
D=y \ \’\A/'-\/

(This is obvious for geometric reasons, but it can be checked
directly from the Peiffer transformations.) In contrast to your
diagrams, the linkages capture only the formal side of things and
are independent of the details of the presentation. In fact, some
linkages are impossible - see below. If R is Zrredundant (no

. . . 1
r ¢ R is conjugate in F to s for s € F , s # r) then we
may colour each strand in the linkage according to the relator r

whose conjugates 2 =a 1ra , ae F, label it, Furthermore,
Peiffer exchanges clearly leave the class mod N of the 'exponent'
a € F invariant, so the colouring may be further refined: each
basic colour (one for each r € R) 1is subdivided into shades (one
for each class mod N , i.e. one for each element of G = F/N) .
1f, further, F 1is primary (no r € R is a proper power of some
element of F) then the centralizer of each r € R is simply the
cyclic group generated by r and so C(r) < N . Hence, zf R

is irredundant and primary, then only strands of the same shade
can cancel.

If now K = |(X; R)| is the 2-dimensional complex correspond-
ing to the presentation (X; R) of G , then it is known that
mK =0 if and only if the following three conditions hold:
1. R 1is irredundant,
2, R is primary,

3. The presentation is aspherical in the sense that every n-tuple
ei Ui
P = (pl, Pys +ees pn) such that p; = (ri ) » T, € R,

u; € F, e, =%l and pjpy ... p, =1 in F , satisfies P

is equivalent to ¢ by Peiffer transformationms.

Now conjugation in F induces an action of G = F/N on the
abelianised group N making N into a Z G-module. Let
Ar: ZG— N be given by x —T.x where T is the class of

reR in N . The image of Ar is the cyclic submodule T.ZG
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of N . Consider the homomorphism of Z G-modules

A=e A:e ZG— N .
reR reR

Then conditions 1, 2, and 3 above (and so the condition w,K = 0)
are equivalent to the requirement that A is an isomorphisSm of

Z G-modules. It follows that if nzK = 0 then we have for every

r ¢ R a well defined homomorphism Degr of N onto the free
abelian group Z G given by
A= A-l Py
Degr:N—-*N———> ® ZG — ZG
reR

where A 1is abelianisation and P, is the r'th projection. Note

that Degr is defined by the conditions

Degr((sk)a) =k [a] 8(r, s)

for every s ¢ R, a e F and integer k ; [a]l denotes the image
of aeF in G =F/N and 6(r, s) is the Kronecker 6 .
Following Degr by the evaluation homomorphism ZG — Z at

various points of G or by the augmentation homomorphism
ZG—— Z we get various integer valued 'degrees'.

Using these degrees, together with the fact that a centralizer
of an element of a free group is necessarily a cyclic subgroup of
the free group, we can show that certain linkages are forbidden in
an aspherical K(1r2K =0) .

EXAMPLE 1. (Whitehead linkage). Suppose K = |(X; R)| where
112K=0 and r, s e RcF with r #s . Let a=(r€)u,

b = (sn)v where u, veF and € , n =1 . Write Dega

for e.Degr: N — Z G followed by the evaluation map ZG — Z

at [ul e G . Let Degb be defined similarly in terms of e.Deg_

and [v] € G. Let ¢ denote c .,

Suppose given a 'Whitehead linkage' corresponding to a sequence
of Peiffer transformations. Starting at the top we find
2

c=3 ,d=b,e=c2,f=d°=@9"
Now f =b implies c(@®) commutes with b . As b is a
conjugate of s e R, and R 1is primary, the centralizer of b
in F 1is the cyclic group < b > , and so



1

c(ca) = bk for some k € Z,

or () (aPd) = bk |

Applying Degb to both sides of this equation, we obtain k =0 .
Hence

@) (% =1
fa _ b
i.e, a =a
bab
i.e. a =a.
~ ~b . . ~b L
So bab = a° commutes with a , and so we obtain a = a  for

some & € Z . Taking Dega of this equation, we obtain £ = -1

and so b commutes with a . Hence b = a" for some me Z .
Taking Degb we obtain m =0, i.e. b = 1 , which is a contrad-

iction. Hence the Whitehead linkage (with different coloured
strands) never occurs if TR =0 .
EXAMPLE 2, Again assume that HZK =0 . Assume also that

+
x = (t)" where t e R and r , 8 are conjugates of some
relators other than t (or conjugates of inverses of such
relators). Again rs must commute with x and so rs = x .

210
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Taking Degx s, weget k=0 or rs =1, Hence the above

diagram can be replaced by a simpler one

r* s S F
To prove (or to disprove) the Whitehead conjecture it is
sufficient to consider the case when the subcomplex L of K
differs from K by a single 2-cell. Paint this extra 2-cell red

and all the remaining 2-cells blue. Assume that m,K = 0 and let
P = (pl, Pps <ves pn) be an identity amongst the blue relators

(each P; is a conjugate of a relator in L , or its inverse,
and Py Py s+ Py = 1 in F) . Then p 1is equivalent to @ by

Peiffer moves in K . This gives a linkage consisting of a blue
part X anchored to the 'floor' and a red part, a link Y ,

floating above. To prove that ﬂzL = 0 we must show that p is

equivalent to ¢ in L - that is that we can get rid of the red
stuff. (There is no need to show p collapses to @ - we are not
worried about the blue insertions.)

If X and Y are geometrically unlinked, we are done.
Otherwise, there seem to be two possible cases:
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1. X and Y are algebraitally linked as in Example 2. Part of
the problem is to make this idea precise — perhaps in terms
of the various degrees (shades of blue, shades of red).

2. X and Y are algebraically unlinked, as in Example 1, but
are still geometrically linked.

Now a possible proof (or a search for a counter example) could
go as follows (assuming ™K = 0):
(a) In case 1, one would like to show that X and Y can be

replaced by X, and Y, which are 'less linked' algebraically,

and so on, ending with X_ and Y _ which are algebraically
. n n
unlinked.

(b) 1In case 2, one would like to show that this never happens
(for MK = 0): in other words, the only way to be

algebraically unlinked in aspherical K 1is to be also
geometrically unlinked.

Unfortunately, the 'degrees' described above do not seem a
sufficient tool for all this - they work satisfactorily if there
are only two underpasses, but after that they seem to fail. For
example, I am unable to show that a 'double Whitehead link' cannot

occur if ﬂzK =0:

D

u

It would help a lot if one had some 'higher order degrees' to
decide whether a given identity sequence p = (pl, oo pn) is

Cj:j
1

equivalent to @ . Assume now that R is irredundant and primary,
but do not assume that (X; R) is aspherical. The first (or
zero-order) obstruction is of course PPy +++ P = 1 in F .

Next, the first order obstruction is Deg p =0, for all r € R .
(Degr is not well-defined on N 1if (X; R) 1is not aspherical,

but it is still well-defined on n-tuples and also on H (the free
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group on F x R, see [Br-Hul).) If all Deg p =0 , it is still

possible that p 1is not equivalent to ¢ , and it would be nice
to have a second-order obstruction, defined when the first-order
one is zero, and so on. It is all a bit reminiscent of higher
order linking numbers, and Massey products have been suggested as
being relevant,

Here are a few final points;

If nzK =0 and if N is freely generated by a set of

conjugates of elements of R , then every identity among
relators actually collapses [L-S, p.160] and so every
subcomplex of K 1is aspherical. Special cases of this are
R 'staggered' and a special case of this is any one-relator
presentation (p. 161). [See also [C-C-H].]

Other situations when ﬂzK =0 implies nzL =0 for L cK

are listed by J.M. Cohen in [Col. [See also [Hull.] He also
states two conjectures which would (together) imply the

Whitehead conjecture. [But these conjectures have been shown
false in [Bell] and [Du5].]

1 and 2 seem to indicate that a counter example to the

Whitehead conjecture would have to be quite complicated, but that
could be a false impression.



