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Introduction

Let V be a symplectic space over a field K with alternating bilinear form (x, y) — x.y,
for x, yin V. Let Spy(V) be the group of strict isometries of V, that is, the isometries of
V which are the identity on rad(V) = {x € V: x.V = 0}. Particular examples of such
isometries are the well-known transvections A*: x — x+k(a.x)a, defined by an
element a € Vand k € K. If S = V then we define Tv(S) to be the subgroup of Spy(V)
generated by the transvections A* for all a € S and k € K. We assume throughout that
V\rad(V) is non-empty, and that V is finite-dimensional.

Also associated with the subset S of V is a graph G(S), which has vertices the
elements of S and an edge between vertices a and b if and only if a.b # 0 or
equivalently, if and only if 4! and B' do not commute. Note that if K has only two
elements, and S is a basis for V, then G(S) determines the form on V.

The object of this paper and its sequel [3] is to develop techniques for studying the
orbits of the action of Tu(S) on V\rad(V) in terms of properties of the graph G(S).
Essentially this idea was used in [9] to prove that the minimum number of twist
generators of the mapping class group M, is greater than 2g. We return to this type of
application towards the end of [3].

Consider the following conditions on a subset S of V\rad(V):

(A) Tu(S) acts transitively on V\rad(V);

(B) Tu(S) = Spo(V);

(C) S spans V and the graph G(S) is connected.

We first establish in §2 that

(A) = (B) = (O).

This is not difficult. The principal result of this paper is that if K has more than two
elements, then (C) = (B).

In the case where the symplectic space V is regular (i.e. when rad(V) = {0}) this
result may be deduced from results of McLaughlin [16], as was pointed out to us in a
private communication by W. Kantor. The reason for considering the non-regular
case is that regularity is not preserved by taking either subspaces or extensions of a
regular symplectic space, where by an extension of V is meant a symplectic space V'
together with a linear surjection p: V' — V preserving the forms. This extension
process will be found a useful tool in this and the following paper and so it will be
discussed in detail in §6. In particular we obtain relationships between Tu(S’) and
Tuv(S) when §’ is a subset of V' and p(S’) = S.

The key methods of this paper, which will also prove essential in the sequel, are
given in §§ 3 and 4. Given S < V, the process of t-equivalence, defined in § 3, changes S
but not Tv(S) nor the number of components of G(S); however, if S is finite, there is a
t-equivalence from S to S’ such that G(§’) is a forest (Theorem 3.3).
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Suppose that S is a basis for V, and x € V. The support (or graph) of x is the full
subgraph of G(S) with vertices those elements of S occurring with non-zero coefficient
in the expression of x in terms of the basis S. This support will be written x | or simply
x|. If G(S) is a forest, so also is x|, and it is proved in §4 that x can be transformed by
Tu(S) to an element y such that y| is discrete and has no more components than does
x|. The basic technique in the case where G(S) is a tree is then to act on such a y by
Tu(S) so as to decrease the number of components of y|, by moving the components
(vertices) of y| around G(S).

In this paper we show that if K has more than two elements, y is not radical, and
G(S) is a tree, then we can reduce the number of components of y| to one. This will
prove (for K # F,) our implication (C) = (B) in the case when S is a basis. The general
case is obtained by applying an extension process developed in §6.

The case when K has only two elements is more complicated, but more interesting,
since even under assumption (C) there is more than one orbit. In the sequel we
describe these orbits and give conditions for Tuv(S) to be equal to Spy(V). It is the
necessity of developing techniques appropriate to the case K = F, which makes us
not attempt (what might be possible) a direct deduction of (C) = (B), for the case
where K # F,, from the results of [16] for the regular case. The novelty of the
methods has also necessitated a complete and not too terse exposition.

Our methods, though new, are elementary, and we have written this paper so that
little knowledge of symplectic algebra is required by the reader. Some background
to the literature on transvections is given at the end of this paper.

The genesis of this paper and its sequel is as follows. The ideas leading to [9] were
developed while S. P. Humphries was a research student at Bangor in 1974-77 under
the supervision of Dr P. Stefan, and the basic scheme of this paper and its sequel was
worked out by Humphries in 1977-78. Peter Stefan died tragically in a mountaineer-
ing accident in June 1978, and R. Brown then became involved as supervisor. The
material of this paper forms a revised version of Chapter 3 of [10], and the main
results were announced in [11].

2. Symplectic spaces and graphs of subsets

Let V be a symplectic space over the field K. A basis of the form e, ...,e,, fi, ..., f,
where e;.e; =f.f;=0, e;.f; = —f;.e; = 6;; for i, j=1,...,n is known as a symplectic
basis for V. If such exists, then V is regular. Conversely, any regular V has such a
basis, and so any two regular symplectic spaces are isometric if and only if they have
the same dimension. For all V the space V/rad(V) inherits from V a regular
symplectic structure, and if U is a complementary subspace in V of rad(V), then the
form is regular on U. These results may be found in [2].

As explained in the Introduction, the transvections on V are the linear mappings
A*: x — x+k(a.x)a, for a given a € V and k € K. Note that 4*4" = A**" and that
A¥ is a strict isometry. We abbreviate A' to A4, and call A* a power of A. If k # 0, then
A* is the identity if and only if a € rad(V). If a is a product of powers of transvections
A,,..,A, and x € V, then a(x) belongs to the subspace of V spanned by x and
ay, ..., a,. Another easily verified and useful fact is that if 0 is an isometry of V and
b = 6(a), then

BX = A%~ ".

Let S be a subset of V. We now continue the methods initiated in [9] to study the



ORBITS UNDER SYMPLECTIC TRANSVECTIONS | 519

groups Spo(V) and Tu(S) via properties of the graph G(S). We are particularly
interested in the orbits of the action of Tu(S).

PROPOSITION 2.1. Under the action of Tu(S) on V, two elements of S lie in the same
orbit if and only if they lie in the same component of G(S).

Proof. Let a and b be members of S and assume a # b.

If a.b # 0 then A*B*(a) = b where k = (b.a)™". So if a and b are adjacent in G(S)
they lie in the same orbit of Tv(S). Thus if a and b lie in the same component of G(S)
they lie in the same orbit of Tu(S).

Suppose conversely that a and b lie in the same orbit of Tv(S). Then there are a
sequence of distinct elements b, = a, b,,...,b,,, = b, of V, and elements a, ..., a, of
S, ky, ..., k, of K such that b, , = A¥(b;), fori =1, ...,r. Since b;,, # b;, a; is adjacent
to at least one of by, a,, ...,a,_,. It follows by induction that a,, ..., a; lie in the same
component of G(S) as a, fori = 1,...,r. But b, = A, *(b) # b. So a, is adjacent to b,
and so a and b lie in the same component of G(S).

COROLLARY 2.2. The set S is contained in a single orbit of the action of Tv(S)on V if
and only if G(S) is connected.

The following (essentially well-known) result gives the largest subset of V with G(S)
connected.

PrROPOSITION 2.3. The graph G(V\rad(V)) is connected.

Proof. Let x,y € V\rad(V). If x.y # 0 then x and y are adjacent in G(V\rad(V)).
Suppose x.y = 0. Then we can find z adjacent to both x and y as follows. The
annihilator x* of x in V is a hyperplane, as x ¢ rad(V). If x* = y* then choose z not in
X*,

If x* # y* then choose u € x*\ y* v e y*\x* and set z = u+v.

COROLLARY 2.4. The group Tuv(V) acts transitively on V\rad(V).

The above corollary is well known: for the regular case see [2, p. 138] and for the
non-regular case with K of characteristic not 2 see [20].

ProvposiTION 2.5. If V\rad(V) # 0 and Tuv(S) = Tv(V), then S spans V.

Proof. Since V\rad(V)#0, the group Tu(V) is non-trivial. Since also
Tu(S) = Tu(V), there is an element a € S\rad(V).

Let x € V. If x is not contained in rad(V) then Corollary 2.4 gives an element a of
Tov(V) such that a(a) = x. Then « also belongs to Tv(S) and so x € {S) (the subspace
spanned by S).

Suppose x € rad(V). Then a+x ¢ rad(V) and so a+x € {(§). Hence, again,
x e {8

Itis proved in Theorem 3.25 of [2] that if V is regular, then Tv(V) = Sp(V). We now
show how the same type of proof extends to the non-regular case.

PROPOSITION 2.6. The group Spo(V) is generated by transvections, that is,
Spo(V) = Tu(V).
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Proof. Choose a splitting V=U@®rad(V) and a symplectic basis
B ={ef\,....e, f,} for the regular symplectic space U. Let 6 € Sp,(V) and suppose ¢
is the identity on B, = {e,, f}, ..., e,, f,}, where 0 < r < n. Let U, be spanned by B,,
and let ¥, be spanned by rad(V) and B\ B,. Then U,.V, = {0}. Hence U,.0V, = 0, and
so 0V, = V,. By Corollary 2.4, there is an element « of Tu(V,) such that ale,, , = e, ,.
Let x=e., y=fir,z=0abf,, . fy.2#0, k=(y.2)"!, a=z—y, then Az =y,
A'x=x. If y.z=0,let b=x+y. Then x.b=1, b.z#0, b.y #0, and so we can
move z to b and then to y keeping x fixed. Hence there is f € Tu(V,) such that B leaves
B, ., fixed.

It follows by induction that there is a y € Tv(V) such that y0 leaves B, fixed. But ;0
is also fixed on rad(V). So y0 = 1, and the proof is complete.

REMARKS. 1. This proposition was noted in [20, p. 153] for the case in which K is of
characteristic not 2.
2. It is easy to show that there is a split exact sequence

I = Spo(V) = Sp(V) » GL(rad(V)) — 1.

We now summarize our results so far.

THEOREM 2.7. Let S be a non-empty subset of V\rad(V). Consider the following
conditions on §:

(A) Tu(S) acts transitively on V\rad(V):

(B) Tu(S) = Spo(¥);

(C) S spans V and G(S) is connected.
Then (A) < (B) = (C).

Proof. (A) = (B). Since Tu(V)= Spo(V), it is sufficient to show that if
x € V\rad(V) and k € K, then X* € Tu(S). By (A) there are a € S and « € Tu(S) with
a(a) = x. But then X* = a4*a™"!, and so X* € Tu(S).

(B) = (A). This follows immediately from Corollary 2.4 since (B) and Proposition
2.6 imply that Tuv(S) = Tu(V).

(B) = (C). This follows from Corollaries 2.2 and 2.4 and Proposition 2.5.

Because of Theorem 2.7 we shall rarely consider the case where G(S) is not
connected. However in this case we have:

PROPOSITION 2.8. Let S be a spanning set for V such that S is the union S, U ... U S, of
non-empty subsets S; such that S;.S; = 0 for i # j, i, j = 1, ...,r. Then Tu(S) is the direct
product of the subgroups Tu(S,), ..., Tv(S,).

Proof. Clearly the subgroups Tu(S,), ..., Tu(S,) generate Tv(S), and if i # j then the
slements of Ty(S;) commute with all the elements of Tu(S)), since S;.5; = 0. Let L; be
the subgroup of Tu(S) generated by all the Tu(S;) for j # i, and let « € L; n Tu(S;).
Then a leaves each member of S; fixed (since « € L;), and a fixes each element of §;
(since « € Tv(S;) and S;.S; = 0). Since S spans V it follows that o = id.

3. t-equivalence
In studying Tv(S) we try to change S so as to simplify G(S) without changing Tu(S).

DerINITION. Let S and S’ be subsets of the symplectic space V. A surjection
f: S — S'is called an elementary t-equivalence if there are elements a, b of S and k of K
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such that

| x  ifx#b,
Jx) = {A“(b) if x = b.

We denote such an f by t%,. Note that if S is a linearly independent set, then an
elementary r-equivalence is a bijection. The relation t-equivalence between subsets of
V is the equivalence relation generated by the relation ‘there exists an elementary
t-equivalence’,

We apply the term t-equivalence not only to subsets of V' but also to the
corresponding graphs.

ProprosITION 3.1. If'S and S’ are t-equivalent subsets of V, then Tu(S) = Tu(S').

Proof. 1t clearly suffices to consider an elementary t-equivalence t5,: S — §'. Let
¢ = A¥b). Then C" = A*B"A"* for h € K, and it follows that Tu(S) = Tu(S').

PROPOSITION 3.2. A t-equivalence t: S — S induces a bijection ny(G(S)) — mo(G(S'))
of the sets of components of the corresponding graphs.

Proof. 1t will be sufficient to consider the case where t = t¥,.

Suppose that x, y in S are joined by a path p in G(S). If p does not pass through b, or
if a.h =0, then p is a path in G(S’). Suppose that a.b # 0 and p contains successive
vertices d, b, e. Let b' = t(b). Figure 1 shows the known adjacencies in G(S) and G(S').

d d
™

t(b)
a '(l/

G(S) G(S')
FiG. 1

We now show that d can be joined to b" in G(S'). If d.b" # 0 then this is clearly so.
Suppose d.b" = 0. Then d.(b+ k(a.b)a) = 0 and we see that d.a # 0, sinced.b # 0. So
d, a, b’ are successive vertices of a path in G(§’). Similarly b’ may be joined to e in G(S').
So tx may be joined to ty in G(S').

If 1 is a bijection, then t~' = r,,*. If ¢ is not a bijection then b’" € S\ {b}. In either
case, points x, y are joined in G(S) if and only if tx, ty are joined in G(S').

Our main result on r-equivalence is the following:

THEOREM 3.3. If S is a finite subset of a symplectic space V, then S is t-equivalent to a
subset S’ such that G(S') is a forest.

Proof. By Proposition 3.2 it is sufficient to assume that G(S) is connected, and to
prove that S is t-equivalent to §” where G(S') is a tree. We use the following lemma:

LEMMA. Let a€ S and let C be a component of G(S\{a}). Then there is a t-
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equivalence C — C' such that a is adjacent to at most one vertex of C'. Further C' is a
component of G(S'\{a}).

Proof. For any graph I" and vertices b, c of I', let d(b, ¢) denote the distance from b
tocinT.

Let A be the set of pairs (b, ¢) in C x C such that b # ¢ and a is adjacent to both b
and c¢. If A is empty there is at most one edge from a to C and we have finished.
Suppose that A4 is not empty and let u(C) be the minimum distance (b, ¢) for pairs
(b, ¢) in A.

Suppose p(C) = 1. Then there is a pair (b,c) in A such that b.c #0. Let ke K
satisfy a.c+k(b.c)(a.b) = 0. Then in G(tf(S)), t}(C) has one less edge to a than
does C.

Thus if 4(C) = 1 then we can reduce the number of edges from a to C.

Now suppose u(C) > 1. Choose (b,c) € A so that o.(b, c) = u(C), and let u, = b,
us, ..., u, = ¢ be the vertices along a minimal path in C from b to ¢. Then a.u, = 0 by
the two minimality conditions. Let b" = U,(b). Then b'.a # 0 and b'.u; # 0 as in
Fig. 2. So we change § to 8" =t,,,(S) and C to C" = t,,,(C) so that u(C’) < u(C), the
set A remaining unaltered. In this way we may reduce to the case where u(C) = 1.

U, uj u; us

FiG. 2

The final part of the lemma follows from Proposition 3.2.

By repeated application of the above lemma we can find a t-equivalence f: § — §',
not changing a, and such that each component C; of G(S'\ {a}) is joined to a by exactly
one edge, from a to a;, say, for i =1,...,r. The lemma may now be applied to
ay, ..., a,. Continuing in this way reduces S to a tree.

DEFINITION. Let a,b € S. We say a is similar to b in S if there is a non-zero h € K
such that (a—hb).S = {0}. We write this relation as a ~gb; it is clearly an equivalence
relation.

Note that ifa ~gb, thena.b = Oandforallc € S,a.c = 0ifand onlyif b.c = 0. The
converse of this statement holds if K = F,. Thus if a ~gb, then a and b are not
adjacent in G(S), but have the same adjacency relations in G(S).

The following proposition will be particularly useful in the sequel to this paper,
where we require a finer analysis than here of the kinds of trees which arise in a
t-equivalence class. However, we give the result here since it is valid for all fields.

PROPOSITION 3.4. Let S be a linearly independent, connected subset of V\rad(V). Let
a, ¢ be distinct elements of S and suppose there is an element b of S, distinct from a, such
that b is similar in S to a. Then there is a t-equivalence f: S — S’ which alters only a and
is such that fa is similar in §' to c.
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Proof. Suppose first that c.a # 0, and let k = (c.a)”'. Then operating by r* fixes
S\{a} and sends a to u = a+c. Since a ~¢b, there is a non-zero h in K such that
(a—hb).S = {0}. Also b.u = b.c # 0 since c.a # 0. So, operating by t,, fixes S\{u}
and sends u to

v=a+c+h*k(b.c)b=a+c+hk(a.c)b=a—hb+c.

Hence (v—c).S' = {0} where S’ is obtained from S by changing a to v. Note also that
a—hb # 0 since § is linearly independent and so v # c.

If c.a =0, then a, ¢ are joined by a path a = ¢, ¢,, ..., ¢, = ¢ in G(S). We now use
the above process after the first step replacing b in turn by c,, ¢, ..., ¢,—, to make a
similar in turn to ¢,, ¢35, ..., ¢, = .

Typical applications of Proposition 3.4 give, in the case K = F, and for the pairs of
graphs shown in Fig. 3, t-equivalences f such that f maps a to v and leaves all other
vertices fixed.

Jlay=v
a y ¢
bg\ o 4/0 ho—eo——o- °
a
v=f(a) b
-— o AA
c ¢
FiG. 3
ExampLEs. Let S = {e,...,e,} be a basis of the symplectic space V over F,. We

consider here some representatives of t-equivalence classes of connected graphs. By
Theorem 3.3, we may assume G(S) is a tree.

A simple tree with S as vertices is the line graph L,, with e; adjacent to ¢;,, for
i=1,...,n—1 and no other adjacencies. This gives all trees for n = 1,2, and 3.

In [3] we will also deal with the blown up line graph L} in which {e,, ..., e,} forms a
line graph L,, and d,, ...,d,, are adjacent only to e, _,.

[ -0—
€, €5 es €,-2 €, e,

The symplectic forms of L} and L, have rank 2 and 4 respectively, so the graphs
cannot arise from the same symplectic space (and hence are not r-equivalent).
However the forms of L; and Ls both have rank 4, and so we introduce another
invariant to prove these are not r-equivalent.
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Let S be a connected subset of V. By Corollary 2.2, the number of elements in the
orbit of « € S under the action of Tv(S) is independent of the choice of a € S; we write
this number as N(S). If S is t-equivalent to S, then Tuv(S) = Tv(S') by Proposition 3.1,
and S and §’ are contained in the same orbit under the action of Tv(S). So we have:

PrOPOSITION 3.5. If G(S) is connected and S is t-equivalent to S', then N(S) = N(S').

In [3, §7] we will use a characterization of orbits to show that
N(L!") = n(n+1)2"""form = 0, n > 1. It follows that for n > 2, L} is not t-equivalent
to Ln+ 1

4. Graphs of elements and basic moves

A basis P for the symplectic space V is supposed fixed for the rest of this section. Let
G = G(P) be the graph of P. For any x € V' we may write uniquely

x =) xX(a)a, where x(a) € K.
aeP
Let x| = x|, be the full subgraph of G on vertices a of P such that x(a) # 0. If a is a
vertex of x| we will also say that a is a vertex of x.

We can now apply graph-theoretic language to elements of V. For example, we say
that x is a tree if x| is a tree; x is connected if x| is connected; x is discrete if x| is
discrete, that is, has no edges; and so on. Also, if H is a component of the graph x|, we
refer 10 ) o X(a)a as a component (relative to P) of x.

If [ is a graph, a free vertex of I is a vertex w incident to exactly one edge of I.
Given such a free vertex an elementary collapse of I to I removes the vertex w and its
incident edge. A collapse is a sequence of elementary collapses. We use the standard
fact that a finite tree may be collapsed to any one of its vertices.

In order to model collapsing by operations of transvections, we introduce some
notation. Given x € V the notation x = x, @ ... ® x, will mean that there is a
partition P = P, u ... U P, into disjoint non-empty sets and that x = x, +...+x,
where, for i = 1,...,r, x; = Y x(a)a, the sum being over all members a of P,. We write
X ~ yif x and y lie in the same orbit under the action of Tu(P).

LEMMA 4.1. Let x = ka @ y where a is a free vertex of x. Then x ~a@® y and x ~ y.

Proof. Suppose that a is adjacent to the vertex b of x and that x(b) = I. Then for any

h e K we have
AMx) = {(k+hi(a.b))a} @ y.

Since / and a.b are both non-zero, h can be chosen as required.

LeEmMA 4.2. Let x € V and suppose that a component of x has precisely two vertices
a,hband x =ka@Ib®y. Then x ~a @ y.

Proof. By Lemma 4.1,

X~a@®b®y=b@a®y~a®y.

PROPOSITION 4.3. Let x € V be the disjoint union of trees T,, ..., T,. Choose a vertex
a, in each tree T,. Then

X~kia @.. ®ka,
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where k; # 0 and k; may be chosen to be 1 if
(1) T; has more than one vertex, or
() K=F,, or
(1i1) G(S) is connected with more than one vertex and r = 1.
In particular, x ~ y where y is discrete and has the same number of components as x.

Proof. This uses Lemmas 4.1 and 4.2 and a collapse of a tree to any one of its
vertices. To obtain k; = 1 in Case (i) use Lemma 4.2 after collapsing T; to one edge.
Case (ii) is trivial. In Case (1i1) choose b adjacent to a; then B(k,a,) is a tree with two
vertices, which is Case (i).

5. Orbits of Tuv(P) for P a basis, K # F,

This section contains our main results on orbits of Tv(P) for the case where P is a
basis of V. We will deal with the orbits of Tu(S) where S is a spanning set of V after we
have discussed the extension process in the next section.

THEOREM 5.1. Let P be a basis for the symplectic space V over a field K with more
than two elements. Let G(P) be connected. Then Tv(P) acts transitively on V\rad(V).

Proof. Since G(P) is connected, V\rad(V) non-empty implies that P < V\rad(V).
So by Proposition 2.1 it is sufficient to show that if x € V'\rad(V), then x ~ a for some
a € P. By Proposition 3.1 and Theorem 3.3 we may assume that G(P)is a tree T. Then
T has more than one element since V/rad(V) has positive even dimension.

Let x € V. Then x is a forest. By Proposition 4.3 we may assume x is discrete. If x
has one vertex, we have finished, by Proposition 4.3(iii). Suppose that x has more
than one vertex. We show that x ~ y where y is discrete and has fewer vertices than x,
so reducing to the one-vertex case.

For any y € V, let m(y) be the minimal distance in T between vertices of y. Then
m(x) > 1 since x is discrete.

LEMMA. [If m(x) > 2, then x ~ y where y is discrete, has the same number of vertices
as x, and m(y) = m(x)— 1.

Proof. Let a, b be vertices of x whose distance apart in T is m(x). Let a,¢,d, ...,b be
vertices along a path of length m(x) in T from a to b. Then «a, ¢, d, b are distinct, since
m(x) > 2. Also a is the only vertex of x adjacent to ¢, since m(x) > 2. Soif x = ka ® =,
we can reverse Lemma 4.1 to obtain x ~ x @ ¢ and then apply Lemma 4.2 to replace
the component ka @ ¢ of x® ¢ by ¢. Hence x ~ ¢ @ z and the lemma is proved.

We now assume that m(x) = 2. Then x has vertices a,, ...,a, (r > 1) adjacent to
some vertex ¢ of T. Suppose that ¢.x # 0. Then C(x) = x @ (¢.x)c and the component
of C(x) containing ¢ is a tree which collapses to ¢. So x ~ y where y is discrete and has
fewer vertices than x.

We now assume that ¢.x = 0. Since x is not contained in rad(V) and P is a basis,
there 1s an element e of P such that e.x # 0. This implies that ¢ is not a vertex of x,
since v is discrete. Among all such e, choose the one nearest in T to |a,,...,a,} and
without loss of generality we may assume that e is nearest to a,. Let v(x) be the
distance in T from ¢ to a,. Then v(x) > 0.
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Assume first that v(x) = 1. Thenc.e = 0, as in Fig. 5, since Tis a tree. Alsoa,.x =0
since a, is a vertex of x, which is discrete. Thus . E(x) # 0. If the coefficient of a, in x
is k,, then the coefficient of a, in A% E(x) is

h =k, +k(a,.E(x)).

Now we use for the first and only time the fact that K has more than two elements:
because of this assumption we may choose k # 0 such that h # 0. Alsoc.x =c.e =0,
and e is not a vertex of x. So if

z=CAYE(x) = x+(e.x)e+k(a,. E(x))a, + k(a,. E(x))(a,.c)c

then ¢, ¢, a,, ..., a, all lie in the same component of z. Now apply Proposition 4.3 to
collapse this component of z to a vertex, and so obtain z ~ y where y is discrete. Then
X ~ y where y is discrete, and has fewer components than x.

.,

~
$

FiG. S

Assume now that v(x) > 1. We show how to reduce to the case where v(x) = 1. Let
e,d,...,a, be a minimal path in T from ¢ to a,. Consider w = E(x) = x +(e.x)e and
recall that e.x # 0. Then d.w = (e.x)(d.e) since d.x =0 by our choice of e. Thus
v(w) = v(x)— L. Also e is not a vertex of x and so e is a vertex of w. Since e.x # 0, ¢ is
adjacent to some vertex of x and so w has no more components than does x. This now
completes the proof.

6. Extensions of symplectic spaces

In this section we develop an extension process which will enable us to replace in
Theorem 5.1 the basis P by a spanning set S. We do this by ‘extending’ the symplectic
space V with spanning set S to a symplectic space V' with basis Pand mapp: V' - V
which preserves the form and satisfies p(P) = S. More generally, we suppose given the
symplectic spaces V', V, a symplectic map p: V' — V (that is, p preserves the form),
and also a subset S’ of ¥'. We then describe Tuv(S') in terms of Tu(S) where S = p(S’).
This description will be used in the sequel [3], but is given here as it is valid for all
fields.

DerFINITION 6.1. Let V' be a symplectic space, and W a vector space. Let
V'=W@ Vand let p: V' - V be the projection. The symplectic structure on V lifts
uniquely to a symplectic structure on V' such that W < rad(V’). Suppose a subset S of
V is given and that S’ is a subset of V' such that p(§’) = S. We then call the pair (S, V')
together with the projection p: V' — V an extension of (S, V).

Two examples of this structure will be crucial.

ExaMPLE-6.2. Let S be a spanning set for V, where dim(V) = n, and where S has r
elements. Let W = K"™", V' = W@ V; then we may choose S' = V' such that S"is a
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basis for V' and p maps S’ bijectively to S.

ExampLE 6.3. Let S « Vand lete € S. We ‘blow up e to m+ | elements’ by forming
V'=K"@® V and letting d, = (0, ¢) and

S = ({0} X S) ) {dp ceey dm}

where d,—do, ...,d,,—d, is the standard basis of K™ @® {0}. Then p(d;) = e, for
i=0,..m

The first major result on extensions is

THEOREM 6.4. Let p: V' — V be a surjective symplectic map of symplectic spaces
V', V. Let W = ker(p) and let i: V — V' be a linear mapping such that pi = 1. Then the
following hold.

(1) W < rad(V’) and p(rad(V’)) = rad(V).

(1) The maps p and i determine a split exact sequence

I —— L(V/rad(V), W) <, Spo(V') —— Spo(V) — 1

in which the action so determined of Spo(V') on L(V /rad V, W) is induced by the action of
Spo(V) on V.

(i) If'S" = V'and S = p(S'), then o(Tv(S")) = Tv(S). If x,y € Vand o« € Spo(V') then
i(y) = 2(i(x)) if and only if y = @(a)(x). So if Tv(S') acts transitively on V'\rad(V’), then
Tv(S) acts transitively on V\rad(V).

Proof. (i) For x e Wand all yin V' we have x.y = p(x).p(y) = 0 and so x € rad(V"’).
Thus W < rad(V’). The rest is just as easy.

(i) Let x € Spo(V’'). Then o leaves W < rad(V') invariant and so « induces a linear
mapping @(a): V — V by @(a)(x) = p(a(x)) where x’ is any element of V' such that
p(x’) = x. It is easily checked that ¢(x) € Spo(V), and that @: Spo(V') = Spo(V) is well
defined and is a homomorphism.

The map i is a symplectic map and with p determines a decomposition
V'= W@ i(V) for which rad(V') = W @ i(rad(V)). For this decomposition of V' the

elements o of Spy(V’) can be written as matrices [(1) Z;jl where «, € Spo(V) and
x,: V— Wisa linear mapping such that «,(rad(V)) = 0. The splitting of ¢ is given by
%y |:(]) 9?2:| The mapping ¢ is determined by o, — [(1) a]l:| This proves (ii).
(i) Let ke K, ae §, and let b = p(a). If x" € V' and p(x’) = x, then
P(A*)(x) = p(A¥(x)) = p(x'+k(a.x")a) = x +k(p(a). p(x"))b = B¥(x).

Hence ¢(Tv(S’)) = Tu(S), since p is surjective. For the last part we note that
@(a)(x) = p(x(i(x))), whence the result follows.

THEOREM 6.5. Let V be a symplectic space over a field with more than two elements
and let S be a spanning set for V such that G(S) is connected. Then Tu(S) acts transitively
on V\rad(V).
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Proof. 1f S is finite, the theorem follows from Theorem 5.1, Example 6.2, and (iii) of
Theorem 6.4.

Suppose S is not finite. Choose a basis P for V such that P is contained in S. Since
G(S) is connected, and P is finite, we can find a finite subset S’ of S, containing P, and
such that G(S') is connected. So Tu(S) acts transitively on V\rad(V), and hence so
also does Tu(S).

We now carry the argument of Theorem 6.4 further, to relate Tw(S’) and Tt(S). The
result will be used in [3].

PROPOSITION 6.6. Let p: V' — V be a surjective symplectic map of symplectic spaces
V', V., let W = ker(p), and let i: V — V' be a linear map such that pi = 1,,. Let §" be a
subset of V' and let S = p(S'). Let ¢: Sp(V') = Sp(V) be the map induced by p, and let
@' Te(S') = Tu(S) be the restriction of ¢. Then ker(¢') = ker(p) if the following
conditions hold:

(a) S spans V, and

(b) W has a basis Q such that for all c € Q and b € S, there are a € S and € Tt(S')

such that i(a) and ¢ +i(a) belong to S’ and f(c + i(a)) = i(b).
If, further, i(S) = S’ then we have a split exact sequence

I —— L(V/rad(V), W) — Tu(S') < Y > Tu(S) > 1.
Y

Proof. Clearly ker(¢’) < ker(¢), so we need only prove that ker(¢) < Tu(S').
Let x € ker(¢). With respect to the decomposition V' = W@i(V), x has matrix

1l
[0 ll where a;: V — Wis linear with «(rad(V’)) = 0 as shown in Theorem 6.4. Let

Q be a basis of W. Then we may write o, as a sum ) ., 4« where 4. € V* and
s{rad(V})) = 0. But the symplectic form . induces a regular form on V/rad(V) and so
an isomorphism V/rad(V) — (V/rad(V))*. So each /. is of the form x b «..x for
some «, € V. By Condition (a) the element «, is a linear combination of elements of S.
So we have shown that «, can be written as a sum of linear mappings of the form
n: x — k(h.x)c for some ke K, be S, ¢ € Q, and so to prove that x € T¢(S') it is
h
1

Choose an a€ S and f# € Te(S') such that i(a) and ¢+i(a) belong to S’ and
B¢ +i(a)) = i(b). Let a, = i(a), a, = ¢ +i(a),and let y = BA;* AL~ Then; € Tr(S'),
@(y) =1, and, for x € V,

(X)) = BATHB T i(x)) + klay. f7(i(x)))ay)
= B (i(x)) + k(i(b).i(x))c)
= i(x)+A(h.x)c

1
sufficient to prove that for such an n the element I:O ] belongs to T¢(S').

= i(N) 4+ n(x).

This completes the proof that ker(¢) = T(S').
The last part follows as in Theorem 6.4.

ExaMpLE 6.7. Our main use of the last result is for the ‘blowing up an element’
process of Example 6.3. In this case W has a basis d,—d,,...,d,,—d,, and thc
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mapping i: V — V' is given by x > (0, x), so that i(S) = §". If ¢ = d;—d, (j # 0) then
c+i(e) € §', and the existence of 8 as required in (b) of Proposition 6.6 is satisfied if
G(S) is connected. Thus if S is connected, there is a split exact sequence

I - L(V/rad(V),K™ — Tu(S) = Tu(S) — 1.

7. Generation by transvections, K # F,

The previous results give all the necessary information for results on generation of

symplectic groups by transvections.
Recall that Spy(V) is always generated by transvections, that is, Spyo(V) = Tu(V).

THEOREM 7.1. Let V be a symplectic space over a field K with more than two elements,
and let S be a subset of V\rad(V) such that S spans V. Then Tu(S) = Spo(V) if and only if
G(S) is connected.

Proof. This is immediate from Theorems 2.7 and 6.5.

ExampLE 7.2. Let P ={e,,...,¢,, f1,..., f,} be the standard symplectic basis for
K?", where K has more than two elements. Letd = e, +...+e¢,, and let S = P U {d}.
Then Tu(S) = Sp(2n, K).

ExampLE 7.3. Let L={e,...,e,,}, where for i=1,..,2n—1, e.e;y, =1=
—¢;+.¢; are the only non-zero products of L. The induced form is non-singular,
To(L) = Sp(K?") is isomorphic to Sp(2n, K), and 2n is the minimal number of
transvections generating Sp(2n, K).

REMARK. The subject of groups generated by transvections is related to geometry
(asin[2, 18, 22]), to the study of classical groups [6, 7, 14, 15, 21], to coding theory (as
in [24,25]) and has its own interest [16,17,19,20]. These groups also arise in the
theory of monodromy groups of isolated singularities of surfaces. In this case the
transvections are the monodromy operators associated to the Picard-Lefschetz
vanishing cycles, and the monodromy group is the subgroup of the group of
automorphisms of homology generated by the monodromy operators [1]. This
viewpoint is developed in 5, 13, 23], which, as we have recently become aware, have
methods closely related to some of ours.

Some aspects of our results are well known to experts (for example, the author of
[21] referred us to Lemma 1.3 of that paper for the minimal number of transvections
generating Sp(n, K)). In [18, p.31] it is shown that Sp(2n, K) is not generated by
transvections from the standard basis, and the author goes on to consider generation
of Sp(2n, K) by other sets of ‘elementary matrices’. He also studies the problem of
finding the length of an element o of Sp(2n, K), defined as the minimal number of
factors in the expression o as a product of transvections. This problem was originally
considered by Dieudonné in 1955 (see [4] for a recent account correcting some earlier
errors), and is considered in [20] for the non-regular case and for characteristic of the
field not 2.

Our graph G(S) has been considered also in [24] for certain subsets S of a
symplectic space over F,.

J. 1. Hall drew our attention to a paper by K. B. Farmer and M. P. Hale Jr (‘Dual
affine geometries and alternative bilinear forms’, Linear Algebra Appl., 30 (1980),
5388.3.53 HH
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183-199), and showed how our Theorem 7.1 may be deduced from Theorem 5.1 of
that paper. However, the results of Farmer and Hale assume throughout that K has
morethan two elements, and so do not immediately apply to the case considered
in our sequel, for which the present methods are a foundation.

Hall in [8] surveys results related to the transvection problem for symplectic groups
over F,. Ishibashi in [12] generalizes our results in this paper to symplectic groups
over local rings.
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