MATHEMATICS

G-GROUPOIDS, CROSSED MODULES AND THE FUNDAMENTAL GROUPOID OF A TOPOLOGICAL GROUP

BY

RONALD BROWN AND CHRISTOPHER B. SPENCER 1)

(Communicated by Prof. H. FREUDENTHAL at the meeting of March 27, 1976)

INTRODUCTION

By a *G-groupoid* is meant a group object in the category of groupoids. By a *crossed module* (A, B, δ) is meant a pair A, B of groups together with an operation of the group B on the group A, and a morphism $\delta: A \to B$ of groups, satisfying: (i) $\delta(a^b) = b^{-1}(\delta a)b$, (ii) $a^{-1}a_1a = a_1^{\delta a}$, for $a, a_1 \in A$, $b \in B$. One object of this paper is to advertise the result:

THEOREM 1. The categories of \mathcal{G} -groupoids and of crossed modules are equivalent.

This result was, we understand, known to Verdier in 1965; it was then used by Duskin [6]; it was discovered independently by us in 1972. The work of Verdier and Duskin is unpublished, we have found that Theorem 1 is little known, and so we hope that this account will prove useful. We shall also extend Theorem 1 to include in Theorem 2 a comparison of homotopy notions for the two categories.

As an application of Theorem 1, we consider the fundamental groupoid πX of a topological group X. Clearly πX is a \mathcal{G} -groupoid; its associated crossed module has (as does any crossed module) an obstruction class or k-invariant which in this case lies in $H^3(\pi_0 X, \pi_1(X, e))$. We prove in Theorem 3 that this k-invariant is the first Postnikov invariant of the classifying space B_{SX} of the singular complex SX of X. An example of the use of Theorem 3 is the (possibly well known) result that the first Postnikov invariant of $B_{0(n)}$ is zero.

Duskin was led to his application of Theorem 1 in the theory of group extensions by an interest in Isbell's principle (a \mathscr{B} in an \mathscr{A} is an \mathscr{A} in a \mathscr{B}). We were led to Theorem 1 as part of a programme for exploiting double groupoids (that is, groupoid objects in the category of groupoids) in homotopy theory. Basic results on and applications of double groupoids are given in [3], [2] and [4].

¹⁾ This work was done while the second author was at the University College of North Wales in 1972 with partial support by the Science Research Council under Research Grant B/RG/2282.

We would like to thank J. Duskin for sending us a copy of [6], and for informing us of Verdier's work.

1. G-GROUPOIDS

We start with apparently greater generality by considering \mathcal{G} -categories. Thus let Cat be the category of small categories. A group object G in Cat is then a small category G equipped with functors $\cdot: G \times G \to G$, $e: * \to G$ (where * is a singleton), $u: G \to G$, called respectively product, unit, and inverse, and satisfying the usual axioms for a group. The product of a, b in G is also written ab, e(*) is written e, and u(a) is written a^{-1} , while the composition in G of arrows $a: x \to y$, $b: y \to z$ is written $a \circ b$ and the inverse for \circ of a (if it exists) is written \bar{a} .

That · is a functor gives the usual interchange law

$$(b \circ a)(d \circ c) = (bd) \circ (ac)$$

whenever $b \circ a$, $d \circ c$ are defined.

It is easy to prove that 1_e , the identity at $e \in 0b(G)$, is equal to e. Further, composition in G can be expressed in terms of the group operation, since if $a: x \to y$, $b: y \to z$ then

(1)
$$\begin{cases} a \circ b = (1_y(1_y^{-1}a)) \circ (be) \\ = (1_y \circ b)(1_y^{-1}a \circ e) \\ = b1_y^{-1}a. \end{cases}$$

Similarly

$$(2) a \circ b = a \mathbf{1}_y^{-1} b,$$

and it follows that if y=e, then ba=ab; thus elements of $\operatorname{Cost}_G e$ and $\operatorname{St}_G e$ commute under the group operation. Another consequence of (1) and (2) is that if $a: x \to y$ then $1_x a^{-1} 1_y = \bar{a}$, the inverse of a under \circ ; this proves that any \mathscr{G} -category is a groupoid (a remark due to J. Duskin [6]). A final remark in this context is that if $a, a_1 \in \operatorname{Cost}_G e$, and a has initial point a, then $a1_x^{-1} \in \operatorname{St}_G e$ and so commutes with a_1 ; this implies that

(3)
$$a^{-1}a_1a = 1_x^{-1}a_11_x.$$

Now let $A = \operatorname{Cost}_G e$, B = 0b(G). Then A, B inherit group structures from that of G, and the initial point map $\delta \colon A \to B$ is a morphism of groups. Further we have an operation $(a, x) \mapsto a^x$ of B on the group A given by $a^x = 1_x^{-1} a 1_x$, $x \in B$, $a \in A$, and we clearly have

$$\partial(a^x) = x^{-1}(\partial a) x,$$

 $a^{-1} a_1 a = a^{\partial(a)}, \text{ by (3)},$

for $a, a_1 \in A$, $x \in B$. Thus (A, B, δ) is a crossed module [5, 8, 9, 13] (also called a crossed group in [6]).

We can express this more categorically. Let \mathscr{G} be the category of \mathscr{G} -groupoids (i.e. group objects in the category of groupoids, with morphisms functors of groupoids preserving the group structure). Let \mathscr{C} be the category of crossed modules where a morphism (f_2, f_1) : $(A, B, \delta) \rightarrow (A', B', \delta')$ of crossed modules is a pair $f_2: A \rightarrow A'$, $f_1: B \rightarrow B'$ of morphism of groups such that $f_1 \delta = \delta' f_2$, and f_2 is an operator morphism over f_1 . Then we have clearly defined a functor $\delta: \mathscr{G} \rightarrow \mathscr{C}$. The result of Verdier is then:

THEOREM 1. The functor $\delta \colon \mathscr{G} \to \mathscr{C}$ is an equivalence of categories. We sketch the proof, partly following unpublished notes of Duskin [6]. Let $M = (A, B, \delta)$ be a crossed module. A \mathscr{G} -groupoid $\theta(M)$ is defined as follows. The group of objects of $\theta(M)$ is the group B. The group of arrows of $\theta(M)$ is the semi-direct product $A \times B$ with the usual group structure

$$(a', b')(a, b) = (a'b a, b'b);$$

the initial and final maps are defined respectively by $(a, b) \mapsto b \partial(a)$, $(a, b) \mapsto b$, while composition is given by

$$(a', b') \circ (a, b) = (aa', b).$$

It is then routine to check that $\theta(M)$ is a \mathcal{G} -groupoid. Clearly θ extends to a functor $\mathcal{C} \to \mathcal{G}$.

We easily obtain a natural equivalence $T: 1_{\mathscr{C}} \to \delta\theta$, where if $M = (A, B, \delta)$ is a crossed module, then T_M is the identity on B and on A is given by $a \mapsto (a, e)$.

To define the natural equivalence $S: \theta\delta \to 1_{\mathscr{G}}$, let G be a \mathscr{G} -groupoid. A map $S_{G}: \theta\delta(G) \to G$ is defined to be the identity on objects and on arrows is given by $(a, y) \mapsto 1_{y}a$. Clearly S_{G} is bijective on arrows so it only remains to check that S_{G} preserves composition and the group operation. This is routine and so is omitted.

We next show how the equivalence between G-groupoids and crossed modules given by Theorem 1 extends to an equivalence between notions of homotopy in the two categories.

The standard notion of homotopy in $\mathscr C$ is as follows [5]. Let (f_2, f_1) and $(g_2, g_1): M \to M'$ be morphisms of crossed modules $M = (A, B, \delta)$, $M' = (A', B', \delta')$. A homotopy $d: (f_2, f_1) \simeq (g_2, g_1)$ is a function $d: B \to A'$ such that

- (i) $d(b'b) = d(b')^{g_1(b)} d(b)$, all $b, b' \in B$,
- (ii) $\delta' d(b) = g_1(b)^{-1} f_1(b)$, all $b \in B$, and
- (iii) $d\partial(a) = g_2(a)^{-1} f_2(a)$, all $a \in A$.

Given such a homotopy d, let $\theta(d) \colon B \to A' \times B'$ be the function into the semi-direct product $A' \times B'$ such that $\theta(d)$ has components d and g_1 . Then condition (i) on d is equivalent to $\theta(d)$ being a morphism of groups.

Now B is the set of objects of $\theta(M)$, $A' \approx B'$ is the set of arrows of $\theta(M')$, while (f_2, f_1) , (g_2, g_1) determine morphisms $\theta(f_2, f_1)$, $\theta(g_2, g_1)$: $\theta(M) \rightarrow \theta(M')$ of \mathscr{G} -groupoids, i = 0, 1. It is now straightforward to verify that $\theta(d)$ is a homotopy or natural equivalence between these morphisms of groupoids.

We therefore define a \mathscr{G} -homotopy $V: h \simeq k$ of morphisms $h, k: G \to H$ of \mathscr{G} -groupoids to be a homotopy (or natural equivalence) in the usual sense with the additional property that $V: 0b(G) \to Arr(H)$ is a morphism of groups. This notion of homotopy gives \mathscr{G} the structure of a 2-category. Similarly \mathscr{C} has, with its notion of homotopy, the structure of a 2-category.

THEOREM 2. The 2-categories of \mathscr{G} -groupoids and of crossed modules are equivalent 2-categories.

We omit further details.

2. THE FUNDAMENTAL GROUPOID OF A TOPOLOGICAL GROUP

Let $M = (A, B, \delta)$ be a crossed module. Then M determines an obstruction class or k-invariant $k(M) \in H^3(Q, A)$ where $Q = \text{Coker } \delta$, $A = \text{Ker } \delta$ [8, 9], which for free B classifies the crossed module up to homotopy equivalences which are the identity on A and on Q.

Thus a \mathcal{G} -groupoid G also determines a k-invariant $k(G) \in H^3(n_0G, G\{e\})$, namely the k-invariant of its associated crossed module. (Here $G\{e\}$ is the abelian group G(e, e).)

A particular example of a \mathcal{G} -groupoid is the fundamental groupoid πX of a topological group X, with group structure on πX induced by that of X (using the rule $\pi(X \times X) = \pi X \times \pi X$ [1]).

The object of this section is to prove:

THEOREM 3. If X is a topological group, then the k-invariant of the \mathscr{G} -groupoid πX can be identified with the first Postnikov invariant of B_{SX} , the classifying space of the singular complex of X.

In this Theorem, the singular complex SX is a simplicial group, and its classifying space $K = B_{SX}$ is the CW-complex which is the realisation |L| of the simplicial set $L = \overline{W}SX$ [10]. We follow [9] in describing the Postnikov invariant of K in terms of its cell-structure as the k-invariant of the crossed module $M_K = (\pi_2(K, K^1), \pi_1(K^1), \delta')$, where K^1 is the 1-skeleton of K and δ' is the homotopy boundary. Now the k-invariant of πX is that of the crossed module $M_X = (\operatorname{Cost}_{\pi X} e, X, \delta)$. We prove Theorem 3 by constructing a morphism $f \colon M_K \to M_X$ such that f induces isomorphisms $f_0 \colon \operatorname{Coker} \delta' \to \operatorname{Coker} \delta, f_3 \colon \operatorname{Ker} \delta' \to \operatorname{Ker} \delta$. The construction of k-invariants [9] then implies that $f_{0*} k(M_K) = f_3 * k(M_X)$ and this is what is required for Theorem 3.

Since K = |L| where $L = \overline{W}SX$, we may use the descriptions of the *i*-simplices of L given in [10]. Thus L_0 is a point, and L_1 consists of the points of X. Hence $\pi_1(K^1)$ is the free group on generators [u] for $u \in X$ with relation [e] = 1, and a morphism $f_1 : \pi_1(K^1) \to X$ is obtained by extending the identity map on generators.

According to [9] M_K is isomorphic to $M'_K = (\varrho_2/d_3\varrho_3, \pi_1(K^1), d_2)$ where d_2 is induced by d_2 in the operator sequence [13]

$$ightarrow \varrho_3 \xrightarrow{d_3} \varrho_2 \xrightarrow{d_2} \pi_1(K^1),$$

and $\varrho_n = \pi_n(K^n, K^{n-1})$ is for n=2 the free crossed (ϱ_1, d_2) -module on the 2-cells of K and for n=3 is the free $\pi_1(K^2)$ -module on the 3-cells of K [13]. Thus to define $f_2: \varrho_2/d_3 \varrho_3 \to \operatorname{Cost}_{nX} e$ we need only define $\bar{f_2}: \varrho_2 \to \operatorname{Cost}_{nX} e$ by specifying $\bar{f_2}(\delta)$ for each 2-cell δ of K in such a way that (i) $\partial \bar{f_2}(\delta) = -f_1 d_2(\delta)$ and (ii) $\bar{f_2} d_3 \varrho_3 = 0$.

The elements of L_2 are pairs (λ, u) such that $u \in X$ and λ is a path in X from $\lambda(0)$ to $\lambda(1)$. Then $\delta_0(\lambda, u) = u$, $\delta_1(\lambda, u) = \lambda(1)u^{-1}$, $\delta_2(\lambda, u) = \lambda(0)$ and so $d_2(\lambda, u) = [\lambda(0)][u][\lambda(1)u]^{-1}$. So we define $\bar{f}_2(\lambda, u)$ to be e if (λ, u) is degenerate and otherwise to be $[\lambda](1_{\lambda(1)})^{-1}$. It follows that

$$f_1 d_2(\lambda, u) = \lambda(0) u u^{-1} \lambda(1)^{-1}$$

= $\partial \bar{f}_2(\lambda, u)$.

This proves (i).

For the proof of (ii) it is enough to show that $\bar{f}_2 d_3(\varkappa) = 0$ for each non-degenerate 3-simplex \varkappa of L, since these form a set of free generators of the $\pi_1(K^2)$ -module ϱ_3 , and d_3 is an operator morphism. For such a \varkappa the homotopy addition lemma gives

$$d_3(\varkappa) = [\partial_3 \varkappa][\partial_1 \varkappa][\partial_2 \varkappa]^{-1}([\partial_0 \varkappa]^{a^{-1}})^{-1}$$

where a is the element of $\pi_1(K^1)$ determined by $\delta_3 \delta_2(\varkappa)$ and $[\delta_i \varkappa]$ denotes the generator of ϱ_2 corresponding to $\delta_i \varkappa$. Now \varkappa is a triple (σ, λ, u) where $u \in X$, λ is a path in X and σ is a singular 2-simplex in X. Let $\delta_0 \sigma = \beta$, $\delta_1 \sigma = \gamma$, $\delta_2 \sigma = \alpha$ (so that, in πX , $[\gamma] = [\alpha] \circ [\beta]$), and let $\alpha(0) = x = \gamma(0)$, $\alpha(1) = \beta(0) = y$, $\beta(1) = \gamma(1) = z$, $\lambda(1) = s$, $\lambda(0) = t$. By the formulae 1) for δ_i in $\overline{W}G$, and since \overline{f}_2 is an operator morphism

$$\bar{f}_2 d_3(\kappa) = \bar{f}_2(\alpha, t) f_2(\beta \lambda, u) \bar{f}_2(\gamma, su)^{-1} \bar{f}_2((\lambda, u)^{x-1})^{-1}$$

(1)
$$= [\alpha] 1_v^{-1} [\beta \lambda] (1_z 1_s)^{-1} ([\gamma] 1_s^{-1})^{-1} (1_x [\lambda] 1_s^{-1} 1_x^{-1})^{-1}$$

(2)
$$= [\alpha] 1_y^{-1}[\beta]([\lambda] 1_y^{-1}) \{ [\beta]^{-1} 1_y \} \{ [\alpha]^{-1} 1_x \} (1_x[\lambda]^{-1}) 1_x^{-1}$$

$$(3) = e$$

¹⁾ The formula for δ_{i+1} in $\overline{W}G$ on p. 87 of [10] should interchange $\delta_0 g_{n-i}$ and g_{n-i+1} .

where to deduce (2) from (1) we use the substitution $[\gamma] = [\alpha] 1_{\nu}^{-1} [\beta]$, and to deduce (3) from (2) we note that each term in round brackets lies in $\operatorname{Cost}_{\pi X} e$ and so by §1 commutes with elements of $\operatorname{St}_{\pi X} e$, and in particular with each term in curly brackets.

This completes the proof of (ii) and so gives the construction of $f': M'_K \to M_X$. Now $\pi_1(K) = \operatorname{Coker}(d_2 : \varrho_2 \to \varrho_1)$ is the free group on generators $[u], u \in X$, with relations $[e] = 1, [u \cdot \lambda(0)] = [u][\lambda(1)]$, for $u \in X$, λ a path in X. It follows easily that $f_0': \operatorname{Coker} d_2 \to \operatorname{Coker} \delta$ is an isomorphism $\pi_1(K) \to \pi_0(X)$. We also need to prove that $f_3': \operatorname{Ker} d_2 \to \operatorname{Ker} \delta$ is an isomorphism, where $\operatorname{Ker} d_2 = \pi_2(K)$ and $\operatorname{Ker} \delta = \pi_1(X, e)$. But $\pi_2(K) = \pi_2(L)$ and L is a Kan complex ([7] Proposition 10.4); hence elements of $\pi_2(L)$ are represented by elements of L_2 with faces at the base point, i.e. by pairs (λ, e) where λ is a loop at e. Then f_3' is given by $[(\lambda, e)] \to [\lambda]$, and this is the standard map $\pi_2(L) \to \pi_1(SX)$ which is known to be an isomorphism.

This completes the proof of Theorem 3.

There should be a better proof of Theorem 3.

What would seem to be required is either a description of the first k-invariant of a topological space K in terms of some crossed module defined using fibrations, or else a description of the first k-invariant of a simplicial set L in terms of a crossed module defined directly by the simplicial structure of L. Neither such description is known to us.

Our final result gives an application of Theorem 3.

PROPOSITION 4. Let X be a topological group which is a split extension of a discrete group by a path-connected group. Then the first k-invariant of B_{SX} is zero.

PROOF. According to [9] p. 43 the k-invariant of the crossed module $M_X = (\text{Cost}_{\pi X} e, X, \delta)$ is determined from the exact sequence

$$e \to \pi_1(X, e) \to \operatorname{Cost}_{\pi X} e \overset{\eth}{\longrightarrow} X \overset{\nu}{\longrightarrow} F \to e$$

(where in our case $F = \pi_0 X$ is discrete) by considering first the deviation from being a morphism of a section s of v. However $v: X \to F$ has a section which is a morphism, since X is a split extension. Therefore the k-invariant of M_X is zero. The result follows from Theorem 3.

COROLLARY 5. The first k-invariant of the classifying space B_X is zero if X is any quotient of O(n) by a normal subgroup.

PROOF. If X is connected the result is clear. Otherwise it is well-known that the determinant map $0(n) \to Z_2$ has a section s which is a morphism,

and so a section for $X \to \pi_0 X$ is the composite $Z_2 \xrightarrow{g} 0(n) \xrightarrow{p} X$ where p is the projection.

There are examples of topological groups X such that M_X has non-trivial k-invariant—such an X is G(Y) where Y is a connected finite simplicial complex with non-trivial first Postnikow invariant, and G(Y) is Milnor's group model of the loop-space of Y [11].

R. Brown,
School of Mathematics and Computer Science,
University College of North Wales,
Bangor, Gwynedd, LL57 2UW

C. B. Spencer,
Department of Mathematics,
The University,
Hong Kong

REFERENCES

- 1. Brown, R. Elements of modern topology. McGraw-Hill, Maidenhead, (1968).
- Brown, R. and P. J. Higgins On the connection between the second relative homotopy groups of some related spaces (submitted).
- Brown, R. and C. B. Spencor Double groupoids and crossed modules. Cah. de Top. Géom. Diff., 17 (1976).
- Brown, R. and C. B. Spencer A homotopy notion for double groupoids, in preparation.
- Coekeroft, W. H. On the homomorphisms of sequences. Proc. Cambridge Phil. Soc. 45, 521-532 (1952).
- Duskin, J. Preliminary remarks on groups. Unpublished notes, Tulane University, (1969).
- 7. Kan, D. M. On homotopy theory and c.s.s. groups. Annals of Math., 68, 38–53 (1958).
- 8. MacLane, S. Cohomology theory of abstract groups III. Annals of Math., 50, 736–761 (1949).
- 9. MacLane, S. and J. H. C. Whitehead On the 3-type of a complex. Proc. Nat. Acad. Sci. Washington 36, 41-48 (1950).
- 10. May, P. Simplicial object in algebraic topology. van Nostrand, (1967).
- 11. Milnor, J. W. Universal bundles I. Annals of Math. 63, 272-284 (1956).
- 12. Spanier, E. H. Algebraic Topology. McGraw-Hill, New York (1966).
- 13. Whitehead, J. H. C. Combinatorial homotopy II. Bull. Amer. Math. Soc. 55, 453-496 (1949).