Non—-abelian cohomology and the homotopy

classification of maps

by Ronald Brown

U.C.N.W. Pure Maths. Preprint 82.6

Prepared for presentation to the conference

"Méthodes d'algebre homotopique en topologie'

at the C.I.R.M., Marseille~Luminy, 1-5 June, 1982.

Professor R. Brown, May, 1982
School of Mathematics and Computer Science,

University College of North Wales,

BANGOR, Gwynedd,

LL57 2uw,

U.K.



Non-abelian cohomology and the homotopy classification of maps

by Ronald Brown

To a filtered space

X X0 < Xl (S Xn € ... cX

we can associate the homotopy crossed complex 1¥ , which consists for n = 1 of the
fundamental groupoid mE= nl(xl, Xg) , and for n 2 2 of the family = X of relative
homotopy groups nn(xn, Xp-1» V) , v € Xy , with the usual boundaries & : n X - LN
and action of m % on mX . The formal properties satisfied by mX define the notion
of crossed complex, and we have a category XC of crossed complexes. Note that

crossed complexes generalise chain complexes C (with Ci =0 for 1 <1) , and they
also generalise groups, groupoids, and crossed modules. A brief survey of their use in

topology and algebra is given in [6]. See also [4, 5, 7]

The category XC of crossed complexes has a convenient notion of homotopy
[10, 6, 71. So for crossed complexes D , C we can define the set

b, C1

of homotopy classes of morphisms D -+ C .

The object of this talk is to advertise the definition (suggested in §5 of (6])

#W(x; ¢ = [nx, C3

for CW-complex X with skeletal filtration X , and for a crossed complex C . That
is, we take [m%, C] as the cohomology of X with coefficients in C .

The definition makes sense, because wX is a homotopy invariant of X . The
proof of this is not entirely trivial. One proof is given by J.H.C. Whitehead in [10]

another is given in [7]. (Here we mean X ~ Y implies X = my L)

The point of the definition is that we expect cohomology to have something to do

with the sets [X, Y| of homotopy classes of maps of spaces. From [7] we take:

Theorem 1. There is a functor B : XC + Top assigning to a crossed complex C a
Cw-complex BC with the property that there is a natural bijection

tx, scl ® 1o(x; ©)
for Ci-complexes X .

Two special cases are of interest:
(i) If C is a group G in dimension n (where G 1is abelian if n 2 2) and zero
otherwise, then BC = K(G, n) , and Theorem | generalise a classical result of
Eilenberg-MacLane. Note that the non-abelian case n = | 1is also included.
(ii) If Cl is a group G , Cn is a G-module M , Ci =0 for i= 1, n and all

boundaries are zero then



HO(X; C) is a kind of twisted cohomology of X with coefficients in the G-module M ,

and so we have a twisted homotopy classification theorem.

There are three obvious questions about Theorem 1%

Ql. How do you prove it?

Q2. What use is it in tackling the general problem of listing the elements of the
set X, Y] of homotopy classes of maps X + Y ?

Q3. how do you compute HO(X; c) ?

All these have interesting answers which we can only outline here. More details

are given in [4, 5, 7].

The construction of the "classifying space" BC is done cubically. So we

construct a cubical complex NC , the nerve of C , by setting

ey, = XC(=z", ©
where Ln is the standard skeletal filtration of the n-cube. We then set BC = |NC|,
the geometric realisation of the cubical complex NC . (There is also a simplicial,

and homotopy equivalent, version BAC ; see the Introduction to [3], which includes
the relevant theses [1, 8].)

The first part of the proof of Theorem | is to note that it is sufficient to
restrict to the case when X is the realisation |K| of a cubical complex K , and

then to use an equivalence to homotopy categories to obtain
[|Kk|, BC] = [K, NCI .

For this we need to know NC is a Kan complex. In fact, NC has a lot of extra
structure, since it turns out to be an example of an w-groupoid, which is a complicated
algebraic structure defined in [4]. Any w-groupoid is a Kan complex, and hence NC
is a Kan complex. We write (as in [4, 51) AC for NC with its structure of

w-groupoid.
Because AC is an w-groupoid, we have a bijection
[K, NC] % [pK, AC]

where the latter set of homotopy classes is taken in the category of w-groupoids,
and pK denotes the free w—groupoid on K . But it also turns out that there is zn
equivalence, of categories with homotopy, between w-groupoids and crossed complexes,
and that this equivalence takes pK to w|K| , and AC to C . So

ek, AC] = [w]g|, €]
and we are done.

Unfortunately, the details of the above are strenuous. However, the pattern of
argument parallels the case BC = K(G, n) (n 2 2) , which uses the simplicial abelian
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group structure on K(G, n) . We are using w-groupoid structures instead, and this is

what allows for non—abelian results.

Something needs to be said about the homotopy type of BC . For convenience we
restrict to the reduced case, i.e. when CO is a point. Then v](BC, v) 1is the
quotient group G = CZ/<SCl , while for n 2 2 ﬂn(BC, v) is the homology of C ,
i.e. Kerd/Imé , together with the action of G . Further, there is a fibration
BC + K(G, 1) whose fibre is l-connected and is of the homotopy type of a product
of Eilenberg-MacLane spaces. (This observation is due to J-L. Loday. I am not too

clear about the classification of such non-principal fibrations.)

Now let Y be a reduced CW-complex with cellular filtration ¥ We can
form the homotopy crossed complex 7Y and the classifying space BrnY . In this case
ﬂ](Bﬂx, v) = ﬂl(Y, v) and for n 2 2 nn(BnX, v) is isomorphic to Hn(§) , the
homology of the universal cover Y of Y . Further there is a map q : Y -+ Brn}
which induces, on homotopy groupé T, » an isomorphism for n =1, and for n 2 2

a morphism equivalent to the Hurewicz homomorphism w, (Y, v) 2, Hn(?) s

These facts are deducible from results of §8, 9 of 5], but are not explicit

there, so it should prove useful to explain the procedure.
For any filtered space Y there are cubical complexes and maps
i
RY —— KY

P

s

pY

where KY is the cubical singular complex of Y , and i 1is the inclusion of the
filtered singular complex RY of Y ; that is RY consists in dimension n of all
filtered maps I™ + Y . The mapping p is a quotient mapping. It identifies two
filtered maps Ln + Y if and only if they are homotopic, relative to the vertices

of In , and through filtered maps. (This definition is not exactly tne same as that
given in (5], but the two definitions agree if oYy = Yy s which is sufficient

for our purposes.)

The cubical complex pY "has the structure of w-groupoid, and its asscciated

crossed complex is #Y . That is, pY is isomorphic as w-groupoid to AmY .

In (5] it was shown that p : RY + pY is a fibration in the sense of Kan. This
result was found to be an important technical tool in the proofs of the main results
of L5], since it helped in proving pY = AnY , and in establishing a crucial
property of "thin elements” in pY . We can now give this fibration property of p

another réle.

The cubical complexes RY and KY are known to be Kan complexes, (The

corresponding property for pY is not so simple to prove.) The inclusion i :RY + XY



is a homotopy equivalence if the functions induced by inclusion mgY, > MY are
surjective for r = 0 and bijective for r > 0 , and the based pairs (¥, Yo, v} are
m-connected for all m 21 and veY; . In particular, i 1is a homotopy equivalence
if Y 1is the skeletal filtration of a CW-complex Y . For such a Y , the

realisation |KY| has the same homotopy type as Y , and in this way we obtain the

map q : Y+ BnY with the properties set out above.
Let X be a CW-complex. We have an induced function
qe : [X, Y] — [X, BrY] .

This function is bijective if dimX Ssm and q : Y + BrY has m—connected homotopy
fibre. This will be true if,for example, ﬂiY =0 for 1 <i<m., In these

circumstances we obtain a bijection
X, Y] — HO(X; ) .

So we can see the relevance of this non-abelian cohomology to some general homotopy

classification problems, particularly in the non-simply connected case.

How do we compute HO(X; C) ? For this we generalise some ideas of Whitehead
in L10j.

For simplicity, we restrict to the reduced case. Let GC* be the category with
objects the triples (K, G, v) 1in which G is a group, K 1is a chain complex of
G-modules (with Ki =0 for i< 0), and Ko is a free G-module with basis the
element v € K, . The morphisms of GC, are to be pairs (g, 8) : (K, G, v) —

(K', G', v') where 8 : G+ G' is a morphism of groups, f : K+ K' is a chain map

and an operator morphism over 6 , and f(v) = v' .

Let XC, be the category of reduced crossed complexes. There is a functor
A : XC, » GC, in which if (X, G, v) = A&C, then G = CIIGC2 s Kn = Cn as a G-module
for n 23 ; KZ is C2 made abelian; Kl is the G-module induced from the augmentation
ideal ICI by the quotient morphism Cl + G ; and KO is the free G-module on the
element v ¢ Cy - (This construction is given in [7] and extends a construction given
in [10] for the case <, is free. A further result proved in [7] is that A has a
right adjoint, and so preserves colimits.) This functor A transforms homotopies to
homotopies, for a suitable definition of homotopy in GC, . So for reduced crossed

complexes C , D we have a function
4, : LD, C] — [AD, AC) .

fow Whitehead proves (but does not state) that if C] and D, are free groups and D,
is a free crossed Dl-module, then 4, is a bijection. Also, he notes that if X is
the skeletal filtration of a reduced CW-complex X , then A7X consists of the cellular
chains C*(i) of the universal cover X of X , these chains being taken as modules

over the fundamental group of X . That is, we have a bijection
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This gives a reasonable computational description of HO(X; C) , and so of |X, BCi.
For example, it leads to the homotopy classification of maps from a surface to the
projective plane [2].

Consider again the bijection

X, Y12 c,®, ¢,(Ms
given when dimX < m and ﬂiY =0 for 1 <i<m. 1If also nlY =0 , then Y=y
and the definition of morphism and chain homotopy in GC, implies that

[€,(X), C (V)1 T [C (X)), CuY)]

where C,(X) is the usual cellular chain complex of X . Since C,(Y) is a chain
complex of free abelian groups there is a chain map ¢ : C,(Y) » Hy(Y) (where the latter

has zero differential) inducing an isomorphism in homology. So we obtain
LX, Y] = [Cu(X), H (V)]

n

10 (x5 B, (1)

1

1 (X; H_(1))
This result includes the Hopf classification theorem (which is the case Y = $™) . Thus
the non-abelian results reduce to- classical abelian results.
All these results give point to a remark of Whitehead in the Introduction to L10.,
which reads in our terminology:
The crossed complex n% appears to be more useful than the chain complex C*(i)
in problems concerning geometric realisability. On the other hand, the chain
complex C*(i) ig useful in studying concrete problems.
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