CHAPTER 1

R-ALGEBROIDS

0. INTRQDUCTION H

We begin this chapter by defining R-algebroids and their
morphisms . These have been studied in several papers ,
[Po-1] , [Mi-1] , [Mi-2] , [Mi-3] , [A-1] .

For instance B.Mitchell [Mi-1,2,3] has given a
categoricel definition of R-algebroids , and obtained some
interesting results on these gadgets , His definition is the
following .

Let R be a commutative ring . An R-category A is a

category equipped with an R-module structure on each hom set
such that composition is R-bilinear . An R-—functor is a
functor T: A -—» B between R-categories such that the maps

T : Af(ag,a,) —~--» B(Ta,,Ta,)
are R-linear ,

In the language of enriched categories , one can define
an R-category to be g category which is enriched over the
closed category of R-modules . An R-category with one object
is an associative R-algebra with identity .

An R-algebroid A is a small R-category . If A and A’ are

R-algebroids , define ABpA’ by Ob(AGRpA’) = ObA x ObA’ ,
A®gA’ ((a,b),(a’,b’)) = A(a,a’) ® A’(b,b?) .
Composition is the unique R-bilinear map satisfying

(a®a’)(b&b’) = ab Q a'b’




The enveloping R-algebroid of an R-algebroid A is

A® = A@pACP |
An R-algebroid A is separasble if A considered as its own
hom functor is projective as an A®-module . It is central if

the map R -—» HomAe(A,A) is an isomorphism .

Two R-algebroids are Morita equivalent if their module

categories are R-equivalent .

Before we state the first reslut of [Mi-3] , let us give
the definition of the Brauer group of the commutative ring

Let R be a commutative ring and let V(R) denote the
isomorphism classes of all algebras having R as center and
which are separable over R . Let Vo(R) be the subset of V(R)
consisting of the algebras Homp(E,E) where E is any finitely
generated projective faithful R-module . One can prove that
V(R) , Vo(R) are closed under the operation of tensor product
over R (see [A-G-1]) .

Define an equivalence relation in V(R) as follows : if
€4,%; are in V(R) , then §, is equvalent to 8, if there are
algebras 4; and 4, in V4(R) such that §,8R4, & $.8pA.

Let B(R) denote the set of equivalence classes of V(R) . Then
B(R) is an abelian group [A-G-1]

Now we are ready to state the result given in [Mi-3]
namely that the Morita class of an R—algeproid A is an
element of B(R) if and only if A is central » Separable and
equivalent to an algebra

One of the reasons to generalise algebras to algebroids
is that sn R-algebroid A which is only separable need not be
equivalent to an algebra . Thus algebroids give a new
direction in the theory of separability .
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411 the above material has been given in [Mi-1,2,3]

In {Po-1] , T.Porter has defined an R-algebroid in a
slightly different setting . He has defined an R-algebroid A
on a fixed set of "object" Ap to be a disjoint family of
R-modules , so that A need not have identities . Also he
defined an action of an R-algebroid on a "C-structure” .
Finally he defined a crossed module and linked crossed
modules with internal groupoids . More precisely , he proved
that in the category of R-algebroids over a fixed set , any
internal category is an internnal groupoid

Now we move from this setting to say that it is well
known that groups are appropriately generalised to
groupoids , (see for example [Br-1],[Hi-1]) . As explained
above algebras are'appropriately generalised to
algebroids ; we give an example in section 1 to illustrate
this . Moreover we give the definition of a tensor product
between two R-algebroids and reprove the known fact that the
category of algebroids is a monoidal closed category [Mi-1] .

In sections 2 and 3 we give the definition of a crossed
module over an associative algebra (see for example [Ge-1] ,
[E-L-1] , {El1-1] ) and introduce the notion of crossed module
over an algebroid . Also we give some properties similar to

those well known for crossed modules over groups
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1. R-ALGEBROIDS :

The material of this section may be found in [Mi-1] ,

[(Mi-2] , [Po-1] . We shall give the definition of an




R-algebroid A on a set of "objects" Ay in the following way

Recall that A is called a directed graph over a set Ay if

there are given functions 389 , 31 :A -9 A, , €:45 - A ,

called respectively the source , target and unit maps , such

that 3% = 3lc = lA . Then we write
: o
A(x,y) = {a € A : 3% = x , 3d'a = y} , and write 1, for ex

If a € A(x,y) , we also write a:x—-y

An R-algebroid (A,A,,99,3%,c,+,.) (which is sbbreviated

to A) is a directed graph A over A, together with for all
X,¥,2 € Ag ;
i) an R-module structure on each A(x,y) ,
ii) an R-bilinear fumction , called composition ,
¥ 1 A(x,y) x A(y,z2) -+ A(x,z)

(a , b) -—— + a ¥b
The only axioms are that composition is associative , and
that the elements 1y , x € Ag , act as identities for
composition : if a:x -» y , then 1, ¥ a = a % 1y = a
Thus the composition makes A into a small category .

A morphism f:A -+ B of R-algebroids A , B is a functor of
the underlying categories which is also R-linear on each
A(x,y) -» B(fx,fy) . The set of all morphisms A -+ B is
written Homp(A,B) . Note that a morphism f:A -+ B preserves
the identities ‘

The zero of A(x,y) is writtem 0 , or Oxy if additional
clarity is required . As usual , bilinearity implies
a0 =0, 0% a=0, whenever these are defined .
Examples:

1) If A, has exactly one object , then an R-algebroid over Ay

is an R-algebra .



2) If A is an R-algebroid over Ag and x € Ap , then A(x,x) is
an R-algebra .

We now come to one of the most important features of the
category of R-algebroids namely that it has an internal hom
functor.

Let A,B be R-algebroids . Suppose given f,g € Homp(A,B) ;
we define Hom(f,g) to be the set of all "natural
transformations " f -+ g , that is » the set of all functions
b : A, —+.B such that bx € B(fx,gx) , x € Ag , and for all

X;Y € Ag and a€A(x,y) the following square

fx ———==-- -+ gx
f?l ‘lga
fy TTThy T BY

commutes . Then Hom(f,g) is given the structure of R-module
by (rb + r’b')x = rbx + r'b’x » Whenever x € Ay and r,r’e R .
There is a bilinear composition
Honm(f,g) x Hom(g,h) --+ Hom(f,h)
(b, b" ) ——mo—r - b % b’
where (b % b’)x = bx x b’x . Then we get ;

Proposition 1.1.1: With the sbove structure , the family

M(A;B) = {.H'D_E(flg)}f’g € HO]I]R(A,B)

is an R-algebroid . ]

A special case is when A,B are R—algehras ;i we still get
an R-algebroid Hom(A,B) and this is one of the motivating
examples for considering the extension from R-algebras to

R-algebroids

Definition 1.1.2: If A,B are two R-algebroids over Ag,Bg

respectively , we define the tensor product ABRB over A XxB,




to be the family of R-modules
{A(x,y)®gB(u,v) : x,y € Ag , u,v € Bg }
with composition (a’@ b’) * (a ® b) = (a’ * a) @ (b’ x b) .

Lemma 1.1.3: Let A,B be R-algebroids over Ag,By respectively.

Then A®pB is an R-algebroid over AgxB, . O

Proposition 1.1.4: Let A,B,C be R-algebroids . Then there is

a natural isomorphism between Homp(AGRB , C) and

Homp (A,Hom(B,C)) .

Proof:

Define a map n : Homp(A®pB,C) -- Homp(A,Hom(B,C)) as follows

if ¢:A8RB -» C , then n(¢) : A —» Hom(B,C) and if x € ob(a) ,
then n(#)(x) is to be a morphism B —+ C , given on objects by
y ——= &(x,y) and on arrow b:y -+ y' by

(n(e)(x))(b) = ®(1,8) . If a is en arrow in A , then

n(e)(a) € Hom(B,C) which is given on objects by

y - ¢(a®1y) and on arrows b : y -+ y’ by

(n(e)(a))(b)

Define a'map n' Homp(A,Hom(B,C)) —= Homp (A®RB,C) as

¢(aBb) .

follows

if ¥ : A -—» Hom(B,C) , then n'(¥) : ABpB —-+ C . If (x,y) is
an object in Ob(A)xOb(B) , then we define

n*(¥)(x,y) = ¥(x)(y) and if a® is an arrow iﬁ A@gB such that
a: x = x',b:y-+y’, then ¢(x),¥(x’) : B -+ C and so
¥(a) : ¥(x) -» ¥(x’) and ¥(x)(b):n'¥(x,y) == n’¥(x,y’) ,
P(x7)(b) : NPW(x’,y) —» n’¥(x’,y’) .

Thus we get the diagram




N () G, y) YEELLR) L o gy (x, v7)

$(a)(y) Y(a)(y")

Y L

Define n'¥(a@b) = ¢(a)(y’)¥(x)(b) = ¥ (x*)(b)¥(a)(y) .
Now we want to show that nn’ =1 , n'n =1 . For nn*® =1 ,

let ¥ : A --» Hom(B,C) and let (x,y) € Ob(A)xOb(B) , then

an’ (¥) (x,y) = n(¥(x)(y)) = ¥(x,y) . If a8b € A®RB , then

an’ (v) (a8b) = n(w(a)(y’)¥(x)(b)) = ¥(a®ly)¥(1,8) = ¢(adb) .
Thus nn’ =1 ,

For n'n =1, let ¢ : A8gB ——» C and let x € Ob(A) , then
(n* (n(®)) (x))(y)

n*((n(e))(x))(b)

n’(e(x,y)) = ¢#(x)(y) for y € Ob(B) and

N’ (@(14@b)) = &(1y)(y')e(x)(b) = &(x)(b)

for b:y —» y' € B
Hence n’((n(¢))(y)) = n’(¢(a®ly)) =
¢(a)(y) o(x)(ly) = ¢(a)(b) , whenever & :x -- x’ and
b iy -y’ . That is , the category of R-algebroids can be
given the structure of e monoidal closed category . o

For other properties of the category of R-algebroids
which are not valid in the category of R-algebras see y
[M-1,2,3] .

If the unit map is omitted from the algebroid structure

then we obtain an R—algebroid (without identities)

Remark 1.1.5: Let A,B be algebroids (without identities) and

let M(Agy,By) denote the set of functions Ag ——= B4y . Let ®© be

the function




@ : Homp(A,B) —-+ M(Ag,By) .

Then each fibre e~'(h) = Homp(A,B;h) can be given the
structure of R-module by (f+g)a = fa + ga , (rf)a = f(ra) ,

for all a € A, r € R .

2. CROSSED MODULES (OVER ASSOCIATIVE ALGEBRAS):

The general concept of crossed module originates in the
work (1949) of J.H.C.Whitehead [Wh-1],[Wh-2] in algebraic
topology . There the crossed modules were free crossed
modules of groups . Aleo the notion of crossed module has
been studied by Peiffer [Pe-1] and Reidemeister [R-1] , and
they have defined identities among relations . For further
detail see the survey of Brown—-Huebschmann [B-Hu-1]

In the group case , a crossed module generalises the concepts
of a normal subgroup and that of an ordinary module .

The work of [K-L-1] in algebraic EK-theory has introduced
crossed modules of Lie algebras . In fact they have studied a
fibration in Lie-algebras and they found that the induced map
of the fibration gives a crossed module . The early work of
[Ge-1] , [L-1] and [L-S-1] essentially involves the notion of
crossed modules in associative algebras and commutative
algebras under different names , which they use to define
cohomology groups of algebras . Also [L-R-1] has analysed
crossed modules in associative algebras, and the general case
of crossed modules in a category of interest C has been

discussed in [Po-2] : he has proved that "the category of



internal categories in a category of interest C is equivalent
to the category of crossed modules C" . For the precise
result , see [Po-2] .

In this section , we give the definition of crossed
module in the category of associative algebras in order to
set the stage for the definition of crossed module over
algebroid in the next section

Fix a commutative ring R (with unit) , and let AL be the
category of associative algebras over R

We define now an associative action in the category AL as

follows
Let A,M be associative algebras over R . An associative
action of A on M is a pair of maps

A XM--M i M XA -2 M

(a,m) -+ Bp s (m,a) -+ mt

such that M is a left and right A-module (bi-A-module) , that

is ,

i) (m+m’)8 = w® + m’8 y 8(m+m’) = 8m + 8p* ,
v ’

ii) m8ta’ = pa 4 pa’ , ata’y - 8y 4 a'p

and satisfy the conditions :
: ]

iii) (m.m’)8 = m ., m’8 s B(m.m’) = 8m ., m E

iv) maa’

v) r(m8)

(mﬂ)a’ , aa’p - a(a’m) ’

]

mFa = (rm)8 ,
for all r € R , m,m’€e M , and a,a’e A .

A crossed module in AL is an associative algebra morphism

U : M - A with an associative action of A on M such that :

i) u(®m) = a.(mm) , H(m®) = (im).a



ii) HIg® = p p* , pdm’ = p g
for all m,m’€ M and a € A .
Examples: 1) Let A be an associative R-algebra and let I be a
two-sided ideal in A . Let i:I ——- A be the inclusion map ,
then i with action of A on I given by multiplication is a
crossed‘module
2) Let A,M be associative algebras and let M be a bi
A-module . Then the zero map from M to A is a crossed
module with the action given by bimodule structure
Now we move on and in the next section to give the

definition of crossed module (over an algebroid) by using the

above definition

3. CROSSED MODULES (OVER ALGEBROIDS):

In the previous section , we defined a crossed module in
the context of associative algebras .In this section we
define a crossed module over an algebroid .

Let Ay be a set and let A,M be two R-algebroids over Ag ,
where M need not have identities . Suppose A operates on M on
the right and on the left as follows

Let m:x -+ y € M and a € A(w,x) , b € A(y;z) , then we
denote the right action by mP ¢ M(x,z) , and the left action

by ®m € M(w,y) as shown in the diagram beiow

m
X —9- y
a h
W -3 X y —=»— g
8m € M(w,y) mb € M(x,z)
left action right action
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such that these actions satisfy the following axioms ;

(1.3.1)

(8m)b = a(mb) (1.3.1) (i)
(m@)b = pab , b(am) = bap (1.3.1)(ii)
?:+E ;;?: : :E +’m1§+?‘a?maf ;1?m= ap + ag, (1.3.1)(iii)
(rm)d = r pb = arb | &(rg) = r 8p = rap (1.3.1) (iv)
lxp = g = olv (1.3.1)(v)

for all a,b € A , m,m; € M and x,y € A, . Thus we get

Definition 1.3.2: Let A,M be two R-algebroids over Ag . A

morphism u:M -—-+ A is called a crossed module if there are

actions of A on M sdti:fying the above axioms and also the
following axioms :

w(mP) = (um)b , wu(®m) = a(um) (1.3.2) (i)

mm’ = mMm’ = Hmge (1.3.2)(ii)
for all a,b € A , m,m’ € M and both sides are defined

Definition 1.3.3: A morphism of crossed modules

(o, B): (A,M, ) ——> (A’,M’,u") is two algebroid morphisms
%A -—— A’ |, B:M ——> M' such that o«u = u’pg and
B(8m) = %agm , B(mP) = pn*d | for all a,b € A , m € M and
XiA -—+ A’ is to preserve identities . Thus we have a
category C of crossed modules (over algebroids)

To give examples of such crossed modulés y we define a
subalgebroid and two-sided ideal . '

Definition 1.3.4: Let A be an R-algebroid over Ay . A

subalgebroid A’ is a disjoint family of R-submodules

A" (x,y) = Alx, 1)}, o o Ao

with units and each R~bilinear function
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A'(x,y) x A’(y,z) —-+ A’(x,2)
is the restriction of the R-bilinear function
A(x,y) x A(y,z) ———= A(x,z)

For example , the family {A(x,x)} is a subalgebroid .

X € Ag

Defipition 1.3.5: Given an R-algebroid A over A, , a

two-sided ideal I in A is a family of R-submodules

{I(x,y) & AM(x,¥)}, o ¢ Ao

such that I satisfies the axiom:

if a € I(x,y) , b € A(z,x) , ¢ € A(y,w) , then ba € I(z,y)
and ac € I(x,w)

Example: Let A be an R-algebroid over Agp and suppose I is a
two-sided ideal in A . Let i:I -+ A be the inclusion morphism
and let A operate on I by

(i) a€ = ac (ii) Pa ba , for all a € I , b,c € A .

Then i:1 -+ A is 8 crossed module . Clearly I is an
R-algebroid (without identities) .

Remark 1.3.6: Let f:A --» B be an algebroid morphism , where
A,B are defined over the same set A, and Ob(f) = 1oy . Then
ker f = {a € A(x,y): fa = Oxy for all x,y € Ap} is a
two—-sided ideal in A

Proposition 1.3.7: Let 4 : M —» A be a crossed module of

algebroids . Then Im u = {um: m € M} is a two-sided ideal in
A . s

Proof: Let a€lm 4 , so there is meM such that um = a , for
some a € A . Let beA such that ab is defined , then

ab = um b = u(mb) . Thus ab € Im u and similarly ca € Im u ,

for ceA and ca is defined . &}
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Let I be a two-sided ideal in A . Then we can define
quotient R-modules A(x,y)/I(x,y) for all x,y € A, . Then
there is an R-bilinear morphism
¥:A(x%,y)/1(x,y) x A(y,2)/1(y,2) - A(x,2)/I(x,z)
and associativity holds
Then we get an R-algebroid A/I which is the family of
quotient R-modules

{A(%,y)/I(x,y) : X,y € Ap} .

We call it the quotient R-algebroid and then there is a

canonical mapping p:A —-» A/I of R-algebroids . Also we have

an exact sequence

1 -1, 4 -By as:

Thus for any crossed module (A,M,u) , there is an exact
sequence ker g4 == A ——= Im u .
We can state some properties of algebroids
i) Since Imu is a two-sided ideal , then coker u = A/uM exist
and hence there is an exact sequence

Imgg ——+ M --- coker u .
ii) Since mm® = MOy’ | gpnd if um = 0 , then m.M = 0 and
M.m = 0 . Thus m € Ann(M) (Ann means annihilator) and clearly
Ann(M) is a subalgebroid of M . In particular keri.ker g = 0

iii) Coker g = A/Imu acts on ker u .

iv) Let 0 ——» K —— M -B3s A ——5 0 be a central extention s
that is , it is a short exact sequence such that if k € K and
me€M, then km = mk = 0 . Then p:M —+ A can be give the
structure of a crossed module .

Proof: For any a € A , let sa denote an element of M such

that p sa = a (thus 8 is a section of p) .
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Define actions of A on M as follows:
8p = (sa)m , mb = m(sb) .
First , to show that these actions are well-defined .

Let &' be a section of p and let my € M , then we want to

prove that

ag = (s;)m = (s’a)m fTor a € A

Let my € M , then pm, = a and hence m;y —sa , m;, —s’a € K
So (my —se) m = (my —s’a) m = 0 , then (sa)m = (s’a)m . So

the left action is well-defined . We can prove similarly that
the right action is well-defined . It is clear that these

actions satisfy the axioms for a crossed module . 0O
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CHAPTER II

DOUBLE R—ALGEBROIDS

0. INTRODUCTION:

We begin this chapter by showing how to mimic the idea
given in chapter I in one higher dimension . That is s, we look
for "algebroids in two dimensions"” . So we need two different
additions and compositions .

In fact , we make an analogy to the idea given by R.Brown
"Higher dimensional group theory" [Br-2] to define double
R-algebroids .

In section 2 we prove that there exist two functors from
the category of R-double algebroids to the category of crossed
modules . Also we give examples of double R—algebroids in the

third section .

1. DEFINITIONS:

The notion of double category has occured often in the
literature (see for example , [Be—l],[Gr—l],[Ma—l],[Wy—l],
[K-S-11,[B-58-1],[S-W-1) and is due originally to Ehresmann
[Eh-1]) . 1In this section we study an object with more

structure than a double category , which we call a double

R-algebroid .

To define double R-algebroids , we start to give in some
detail the definition of double category ;

Definition 2.1.1:[Eh-1],[B-S-1] By a double category D is

meant four related categories
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o

o 1 i
(D'D1'a1'31'*1’c1) ) (Dynzuaznazo*zscz)

Q
1

o

1 1
D _, & ssls*sc) ] (Dzanosszlsza*sc)

o)

as partially shown in the diagram

1
i 2
D, 1 1 D,
st SZ
s\\gzh____ Sg €
Do
and satisfying the rules (i-v) given below . The elements of D

will be called squares , of D,;,D, horizontal and yvertical

edges respectively , and of Dy points or objects . We will

assume the relation

. i .J _ od s s _
i) Sz 82 = Sl 81 i,jg =0,1
and this allows us to represent a square &« € D as having

boundary edges pictured as

1
81«

while the edges are pictured as

S B ._..._E_——a e a Sgb
a €D, b
|
Szb
b € D,

From now on we will write the boundary of & square as

3(the square) for example the boundary of « is written as
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0,1

]
n
[ 2]
[ h
3]
P
n

- i
ii) az(cla)

., J .
aj(e,b) = eslb j=0,1

S0 the identities ¢ a , €;b form squares which have boundaries
a Tz

3(eqa) = (ex ey) , 3(eyb) = (b b)
a Cw

iii) €;ex = £,ex

iv) al(x %, B) = ala ¥ aig i=0,1
2 1 2 2

1]
(=]
e

n

J J :
ala X BIB J

al(a x_ B)
for all «,B € D such that both sides are defined
v) (The interchange law)

(& ¥y B) *3 (¥ %1 8) = (x %5 ) ¥, (B %, g

whenever «,B,>,% € D and both sides are defined

Definition 2.1.2: A double R-algebroid D is four related

R-algebroids

o 1 0o .1
(Dﬁnllail 31361’4’1!*1)'1) ] (D’D2332332’52l+21*2"2)
0 .1 0o .1
(Dl’Do’Si’SI’C'-'-’*’.) ] (D ID ’sziszicl-!.’*")

as shown in the diagram
D
€ 1 1
1 81 Z \ az cz
3 3
D 1 2 D,
1
s? g°
AN 1
T si 82 [
Do

and satisfying the rules given below .

-17-




The elements of D will be called squares , of D,,D, horizontal

and vertical edges respectively and of Dy the set of
"ob jects" .

(2.1.3)
ad = gl i i,j € {0,1} .

Then we can represent a square o as having boundary edges

given by
o
g o 2
a°« o Jd o 1
2
a‘a
1

where the edges pictured as

o a 1 o
8,a« s a Szb
a €D, b
1
§.b
b €D,
First , we assume on D four operations +4,%,;,+,,%¥, defined in
the following way :
Let o,B,7,%,L € D have boundaries given by
c c b (=
dx = (a d) , 38 = (a, d,) , 3y =(a’ d'), 38 =(a  d)
b b e b,
¢’ '
and 3¢ = (d e)
b!

Then « +; B, @ ¥; ¥ , @ +, © , « ¥, §& have boundary edges in
the form

c c
e(x +4 B) = (atay d+d,) , 3(x *; ¥) = (aa’ dd’) ,
b

_18_




c+ecy cc’

9(x +, 8) = (a d) , 3(x *¥, §) = (a e) .
b+b, bb’

So we are ready to give more rules for double R-algebroid

(2.1.4)
al(a+ B) = ala + alp i=0,1 (2.1.4)(i)
(e +, B) = dla + alg i= 0,1 (2.1.4)(ii)
al(x %, B) = ala alg i = 0,1 (2.1.4)(iii)
d(ax, B = ai« x alp i=0,1 (2.1.4)(iv)

for all «,B € D and both sides are defined .
(2.1.5)
We have two scalar multiplications ; for « € D as above and
r € R, so we define r .4 @, r ., « to have boundary edges in
the form
c re
3(r .4 &) = (ra rd) , 3(r ., «) = (a d) .
b rb

These multiplications are to satisfy the following axioms

r .4 (ﬁ"'z ﬁ)

(r .4 & +2 (r .4 B) .
r ., (x +; B) o 2 % } (2.1.5) (i)

(r .5 @) +; (r ., B)

n o

r .y (€ ¥, B) = (r ., ) ¥, (r ., B) e
ro.s (x X B) = (r .p @ ¥ (r .3 8) ) (2f1'5)(11)
r .y (s .« =8 .5 (r ., « (2.1.5)(4ii)

for all «x,B € D , r,8 € R and both sides are defined .

These rules make sense in terms of boundaries , for

example , let «,B € D have boundaries given by

Cl C
d) , then 3(r ., «) = (re rd) ,
b, b
C"’Cl
y 8[r .y (x +5 B)] = (ra rd} ,
b+b,
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ctCy
and 3[(r .4 &) +> (r .4 B)] = (ra rd) , that is ,
b+b
r .y, (x +5 B) = (r .4 «) +5 (r ., B) in terms of boundaries
(2.1.6) (The interchange laws) :
(x +,4 ﬁ) +5 (¥ 4, 8) = (& +5 ¥) +;3 (B +3 §) (2.1.6)(i)

which is diagrammatically as shown below

C C 01 01
X w X W X W X W
a o d 3 a4y B dl » a b4 d y 8y e dl.
y z y z y z y z
b b b, by
+ +:
X ¢ W X €1 x CTC1 o €TC1

ata,|o+,B [d+d, , ata [r+,8 |d+d; , a] «tp¥id , a;| A+;8/d,

Y p F Y b, % Y btb, 2 Y btb, Z
x ctcy y = ctcy w
atay| (ot B)+,(»+,8) |d+dy , atay (ot ,¥)+ 4 (Bt ,8) [d+d,
¥ b+b, z y b+b, z
(o %4 B) ¥, (¥ *; 8) = (& ¥, ¥) %, (B ¥; §) (2.1.6)(ii)
c c’
a o« d » f
b b’
a’ B d’ & i .
e e’
(x +4 B) %, (¥ +; §) = (x % ») +, (B ¥, §) (2.1.6)(iii)

which is diagrammatically given by
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cc’ cc

bb’ v y bb’ v
(x +3 B) %y (7 4+ 8) = (x %5 ¥) +5 (B %, §)  (2.1.6)(iv) .
The explanation is similar to that for the interchange law
(iii) , whenever «,B,¥,% € D and both sides are defined .
(2.1.7)

We assume that each of the algebreid structures has
identities and then €y » €2 give these identities in the
following way ;
given a € D,(x,y) , b € D.(x,y) , then €a , €5b having

boundaries given by ;
a 1,
3(cga) = (14 ly) s+ 23(esb) = (b b) , such that €y 4+ Ty
a Iy
are algebroid morphisms and satisfy the following axiom ;
let a,ay; € D,y(x,y) and b,b, € Do(x,y) , then
€,(ata;) = €48 +, €,8, , €,5(b+by) = €ab +; €5b,
We shall need later some simple facts on zero elements
namely ;
Remark 2.1.8: If x,y € Do , then we write 0 or ny for the

zero elements in both D,(x,y) and Do(x,y) . However if

¢ € Dy(x,¥y) , b € Dy(z,w) , then we have ‘a set

p*(c,b) = (3%) "My n (3)) “1(b) eand this set has zero which

we write O;b . The boundsaries of thie element are given by
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X y
1

0 ch 0

¥4 b W

and it is clear that O;b is the zero for +; in Di(c,b) y

where D2(c,b) is the set of arrows in direction 1 , from ¢ to

b .
Also we can get a square 0:d with boundaries given in the form

0

X z
2z

a 0ad d i

y 0 W

which is the zero for +, in D2(a,d) . Notice that , if « € D

is given by

1 - 2 - pZ : ; -
then ch ¥, x =0 s 0 ¥; @ = Oaf by distributivity

ce ad

Definition 2.1.9: A morphism between two double R-algebroids

D , E (over the same set of objects) is a triple of algebroid
morphisms |

Yo:D —— E , ¥;3:Dy --» E; , ¥5:D, ——o E2
which preserves all structures . Thus ;e get a8 category of
double R-algebroids . Also we can define a morphism between
two double R-algebroids on different sets of objects , by
using the definition givem in chapter 1 section 1 . Let us

denote the category of double R-algebroids (over the same set

of objects) by DA .
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2. FUNCTORS (DOUBLE ALGEBROIDS) — (CHOSSED MODULES):

In chapter 1 section 2 and in the previous section , we
have defined two categories namely the category of crossed
modules € and the category of double R-algebroids DA .

In fhis section , we make an analogy with the result given
in ([B-S-1] , proposition 1) that is , we want to show how to
obtain from & double R-algebroid two crossed modules (over
algebroids) . We start with the main result of this section

namely ;

Proposition 2.2.1: If D is a double R-algebroid , then we have

two crossed modules associated with D .
Proof: First , let Ay = Dy (the set of objects of D) , and

A = D; , the algebroid of arrows of D, . We take M, to

m
consist of squares B with boundary of the form (1 1% ,
0
that is ,
o 1 o 1
Ma(x,y) = {BGD:81B =m, 81ﬂ = 0xy s azﬁ = lx’ 3,8 = ly} .

B %, B

1l

We define +,%,. on M, by B + By = B+, By , B¥x B’
and r . B=1r ., B, whenever BBy, B € M, and r ¢ R . Thus M,

is an R-algebroid over Ay . Let B ¢ M, as above and let

a’ € Ay(y,z) , a € Ay(w,x) . S0 we get two squares in the form
]
y a z W 8 X s
ly €a’ (1, s 1y, €38 (1, "
y a2 W - X

Then we define the right and the left actions of A, on M, by

the formulae
Ba’ = B ¥, £,a’ y BB = €;a ¥, B as shown below
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m a’ ~ ma’ a m
X

X 4 4 b W
1 B cqa’ 1, = l,|pk,c.a’l1, , 1] c,a By =
b4 0 Y a' 2 X 0 zZ = 0 4
am
W

We now prove that these actions satisfy the axioms for

crossed modules (1.3.1)(i-iv)

Axioms (1.3.1)(i-ii) , follow directly from the associativity
of %,

(1.3.1)(iii)

patb = pga + gb | etbg - ag 4 bg

(B + By)b = gb + Bb , 8(B+ p) = B8 + 88,

Proof:

patb B ¥, £¢,(a + b) by definition

B X, [ca +5 €:b] by (2.1.7)(i)

(B ¥, t48) +, (B ¥, €,b) by distributivity

ga + gb

We prove similarly that atbg = ag + bg , (B + B;) = 8D + B.b ,
(B + By) = 8B + 8B,

For (1.3.1)(iv) , nemely (r.B)8 = r . B2 = Bra for all reR ,

by definition

(r.ﬁ)a = (r .2 B) *2 clﬂ.
=r ., (B ¥, £t;a) from bilinearity
=r ., B = r . B%.

= Bl‘ﬂ

*

Also by the definition and bilinearity , we get (r.B)8

Clearly (1.3.1)(iv) is satisfied .
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(o)

f i 17 : —_— -
Define now a map H, .M2 -+ Az by uzﬁ 315

It is clear that up is an algebroid morphism
Finally , to prove that (A,,M,,4,) is a crossed module ,

it suffices to verify the axioms (1.3.2)(i-ii) ; namely
W (B = (u,B)a , u("B) = & (W) , BB = pHlab - HzPps

The first part is clear . Thus we just want to show

that B ﬁ, = Buzﬁ’= uaﬁB,

Suppose B , B’ have boundaries in the form

(1 g 1) , (1 g 1) . Then

B x B’ B %, B' by definition

(c,m *, B) %, (B’ *; €,0) by the identity rule

Since B ¥, €,0 = €,0 by remark (2.1.8) , we have

B ¥ B = (e.;m ¥, B') ¥, £,0 = cym %, B* = "B =
by the definition and remark (2.1.8) .
We can use similar argument to get

B x B = Buzﬁ , as shown in the diagram below

m S | M
Bx B = B ¥, B= 1 B B R =
0 0
m _m’ il —~m’
1 B cym’ |1 1 B c,m’ 1
0 m’— = 0 m’ =
1{ €,0 B’ i 1 €,0 B’ 1
0 0 0 0
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= Bm, = ﬁuiB..
Then we'get a crossed module (A5,Mo,H5)

For the second crossed module , we assume Ay = D, and take

M, to consist of squares B with boundary of the form (m % 0) ,

that is ,

- . 20 - i _ (o] _ -
M (x,y) ={B € D:3_B=m, 3 8= 0xy y3 B =1y , 3. B = 1y}

and clearly M; is an R-algebroid over Agp by B + By = B +4 By
B*x B = pBx, B and r . B=1r .; B . Then we can use similar
argument as above to get a crossed module (A,,My,#,;) . This is

the complete proof of the proposition . 1]

The next section gives examples of double R-algebroids

3. EXAMPLES:

We give in this section three examples of double
algebroids .
1) Let B be an R-algebroid over B, . Then we can construct a
double R-algebroid D = OB of commuting squares in B such that
D and B have the same set of objects (i.e: Dg = Bg)
Let Dj = Dg = B be the horizontal and vertical algebroid

structures , and let D consist of quadruples « =

{a g d) for a,b,c,d € B and cd = ab

-26—




Thus « is determined by its boundary edges .
We define now +, , +, , ¥, , ¥, , .4 , .2 on D in the

following way :

Let°€=(8§d).B=(81§d1).7=(a§:d).

?
£ = (a"g d’) , ¢ = (d g, e) , then we define
s © ’ _ c+cC
® +; B = (ata b d+d’) , @+, ¥ = (a b+b: d) ,
« ¥; & = (aa’ g dd’) , « ¥, £ = (a ﬁﬁ’ e) . If r e R ,

rc

. _ c _
we define r .; « = (ra b rd) and r ., « = (a b d)

It is clear that these operations are well-defined , for
example +; , since «x,B € D , then ab = cd and a;b = cd; hence
(a + a;)b = ¢(d + dy4) , so x +; B €D

Now we want to show that this structure satisfies the
axioms for double algebroids
It 1is obvious that this structure satisfies the axioms
(2.1.2){i-iv) , (2.1.3)(i-iii) end (2.1.5)
Thug it is enough to satisfy the axioms (2.1.4)(i-iv) ,

for (2.1.4)(i) , let «,B,Y,% € D having boundaries given by

C [ 01 01
x = (a d) , B = (ag dgy) » ¥ = (a d) , € = (a, d;)
b b by ‘ by
so
c Cy
by
C+01 C+C1
«+; ¥ = (a d) and B +, § = (a, d,) and then
b+b, b+b 4
C+Cl
(x +; B) +5 (¥ +; ©) = (ata, d+d;) , and

b+b 4
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ctey
(x +2 ¥) +4 (B +5 8) = (a+a, d+d,) .
b+b,
So (a+ay)(b+b,;) = (c+cy)(d+d;) (since ab = cd , a;b = ed, ,
aby = ¢4d , and a;by = ¢,d; . The explanation for
(2.1.4)(ii-iv) is similar to that of (2.1.4)(i) .
Thﬁs the structure OB with these operations does satisfy
the rules for a double algebroid . If B contains identities ,
then OB contains identities .
2) Let B be an R-algebra and let B, , B, be two subalgebras of

B . Define D = O(By,B,) to be the set of commuting squares

c
« = (a d) , for a,d € By , ¢c,b € B, and ab = cd . Let Dy

b

= {*¥} . If we define the operations +, , +, , %, , ¥, ,

+4 3+ »20n D in a similar way to that in example (1) , we get
a double R—algebroid .
3) A generalisation of example (2) is: if B is an R-algebra
and By , B, are subalgebras of B and given homomorphisms
: By, -+ B, ¥: B, —» B .

Define now , Dg = {X} and Dy = B, , D = B, and D to

c
consist of quadruples (a d) , for a,d € By , ¢c,d € B, such
b

that (®a)(¥b) = (Yyec)(@d) .

We define +; , +; , %; , %5 , .4 , .5 on D in the following

-

way

[ o
(e d) , B= (a;, dy) , then
b b

I

for +;, , let «

c
x +; B = (ata, d+d;) . So we want to show that
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(¢(a+a )) (¥b) = (¥c)(@(d+d,)) , and this equation follows from
these two equations (®a)(yb) = (yc)(ed) and

(®a,)(vb) = (vec)(¢d,;) and ¢ is a morphism .

For +, , ¥y , %, , «4 » -2 s We can define these operations
similar as in example (2) by using the fact that ¢ s ¥ are
algebra morphisms .

Clearly the above structure does satisfy the axioms of a
double R-algebroid . Moreover , the two associated crossed
modules of the above double algebroid are
i) the first crossed module is given by the morphism

I
Bz === Bz

c
(1 1) -5 ¢ 5
0

ii) The second crossed module is given by the morphism

I
B1 - BI

1

(a 0) --» a
1 :
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