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The purpose of this paper is to give a simpler proof of a theorem of E.H. Brown [Bro59], that if
F → E → B is a fibre space, then there is a differential on the graded group X = C(B) ⊗Λ C(F )
such that X with this differential is chain equivalent to to C(E) (where C(E) denotes the normalised
singular chains of E over a ring Λ).

We work in the context of (semi-simplicial) twisted cartesian products (thus we assume as do
the proofs of the theorem given in [Gug60, Shi62, Szc61] the results of [BGM59] on the relation
between fibre spaces and twisted cartesian products). In fact we prove a general result on filtered
chain complexes; this result applies to give proofs not only of Brown’s theorem but also of a theorem
of G. Hirsch, [Hir53]. Our proof is suggested by the formulae (1) of [Shi62, Ch. II, §1].

Let (X, d), (Y, d) be chain complexes over a ring Λ. Let

(Y, d)
∇
−→ (X, d)

f
−→ (Y, d)

be chain maps and let Φ : X → X be a chain homotopy such that

(1.1) f∇ = 1; (1.2) ∇f = 1 + dΦ + Φd; (1.3) fΦ = 0;

(1.4) Φ∇ = 0; (1.5) Φ2 = 0; (1.6) ΦdΦ = −Φ.

Let X,Y have filtrations

0 = F−1X ⊆ F 0X ⊆ · · · ⊆ F pX ⊆ F p+1X ⊆ · · · (1)

0 = F−1Y ⊆ F 0Y ⊆ · · · ⊆ F pY ⊆ F p+1Y ⊆ · · · (2)

and let ∇, f,Φ all preserve these filtrations.

Example 1 Let B,F be (semi-simplicial) complexes, let (X, d) = C(B × F ), the normalised chains
of B × F , let (Y, d) = C(B) ⊗Λ C(F ), and let ∇, f,Φ be the natural maps of the Eilenberg-Zilber
theorem as constructed explicitly in [EML53]. The relations (1.1)-(1.4) are proved in [EML53] while
(1.5), (1.6) are easily proved (cf. [Shi62, p.114]). The filtrations on X,Y are induced by the filtration
of B by its skeletons. The fact that ∇, f,Φ preserve filtrations is a consequence of naturality of these
maps (cf. [Moo56, Ch. 5, p.13]). �

We now wish to compare C(B×F ) with C(B×τ F ) where B×τ F coincides with B×F as a complex
except that ∂0 in B ×τ F is given by

∂0(b, x) = (∂0b, τ(b, x)), b ∈ Bp, x ∈ Fp.

Then the filtered groups of C(B × F ) and C(B ×τ F ) coincide but the latter has a differential dτ . If
τ satisfies the normalisation condition

τ(s0b
′, x) = ∂0x, b′ ∈ Bp−1, x ∈ Fp
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then dτ − d lowers filtration in X.
Going back to the general case, we suppose X has another differential dτ with the property

(dτ − d)F pX ⊆ F p−1X, p > 0. (3)

Our object is to construct a new differential dτ = dτ
Y on Y and a chain equivalence (Y, dτ ) → (X, dτ ).

We first note that

Φ(1 + dτΦ)r = (Φ + ΦdτΦ)(1 + dτΦ)r−1

= Φ(dτ − d)Φ(1 + dτΦ)r−1 by (1.6)

= Φ(dτ − d)Φ . . . Φ(dτ − d)Φ,

so that (3) implies

Φ(1 + dτΦ)rF pX ⊆ F p−rX. (4)

But F−1X = 0; therefore the map

Φ
τ

=
∞

∑

r=0

Φ(1 + dτΦ)r

is well defined. Also from (1.3), (1.4), (1.5) we derive immediately

(5.1) fΦτ = 0, (5.2) Φτ∇ = 0, (5.3) (Φτ )2 = 0.

Next we must prove relations similar to (1.6). In fact we have

(6.1) Φτdτφτ = −Φτ , (6.2) ΦτdτΦ = −Φ.

These relations are proved by operating on the power series for Φτ ; the operations are justified by (4)
and the fact that F−1X = 0. For example, we prove (6.1):

Φτdτφτ =

∞
∑

r,s=0

Φ(1 + dτΦ)rdτΦ(1 + dτΦ)s

=
∞

∑

r,s=0

(

Φ(1 + dτΦ)r+s+1 − Φ(1 + dτΦ)r+s
)

=

∞
∑

r=0

−Φ(1 + dτΦ)r

= −Φτ .

By (5.3) and (6.1) the deformation operator

Dτ = 1 + dτΦτ + Φdτ : X → X

is idempotent. We set

∇
τ

= Dτ∇ : Y → X,

f τ = fDτ : X → Y,

dτ
Y = f τdτ∇τ : Y → Y,

and prove easily from (5.1), (5.2) and (6.1) respectively

(7.1) ∇τ = (1 + Φτdτ )∇, (7.2) f τ = f(1 + dτΦτ ,
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(7.3) dτ
Y = f(dτ + dτΦτdτ )∇ = f τdτ∇ = fdτ∇τ , cf. [Shi62, Ch. II §1.]

The relations given so far are sufficient to prove in turn

(8.1) f τ∇τ = 1, (8.2) ∇τf τ = 1 + dτΦτ + Φdτ ,

(8.3) dτ
yf τ = f τdτ , (8.4) ∇τdτ

Y = dτ∇τ , (8.5) (dτ
Y )2 = 0.

Thus ∇τ : (Y, dτ
Y ) → (X, dτ ) is a chain equivalence of chain complexes.

In particular, the construction of dτ
Y and ∇τ applies to Example 1.

As another example, we obtain a generalised form of a theorem of G. Hirsch, [Hir53]:

Example 2 Let X = C(B) ⊗Λ C(F ), let dτ be the differential on X constructed as above from the
twisted cartesian product B ×τ F . Let Y = C(B)⊗Λ H(F ) and let the homology H(F ) be such that
the sequence

0 → B(F ) → Z(F ) → H(F ) → 0

where B(F ), Z(F ) denote the boundaries and cycles of C(F ), splits over Λ. This splitting may be used
to define chain maps ∇′ : H(F ) → C(F ), f ′ : C(F ) → H(F ) and a chain homotopy Φ′ : C(F ) → C(F )
satisfying relations of the form (1.1) –(1.6) (H(F ) has of course the trivial differential). Let

∇ = 1 ⊗∇′, f = 1 ⊗ f ′, Φ = 1 ⊗ Φ′.

Then ∇, f,Φ satisfy the relations (1.1) – (1.6). But on X, (dτ − d)F pX ⊆ F p−1X, p0. So there is a
differential dτ on Y = C(B) ⊗ H(F ) and a chain equivalence (dτ

Y ) → (X, dτ
X ). Composing this with

the chain equivalence for Example 1 we obtain a chain equivalence

(C(B) ⊗Λ H(F ), dτ ) → (C(B ×τ F ), dτ ). �

A Appendix1

As explained earlier, the above was written in 1964 for the conference in Sicily, and published in 1967.
The result was found by trying to understand the paper [Shi62], and had been stimulated by earlier
discussions and correspondence with M.G. Barratt. Later V.K. A. M. Gugenheim went through the
same process and published the same argument in [Gug72]. This area has developed extensively,
and is now called Homological Perturbation Theory, see for example [LS87, BL91], and many oth-
ers. In conjunction with the theory of twisting cochains, it has proved an important theoretical and
computational tool.
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