The twisted Eilenberg-Zilber Theorem

Ronald Brown*

April 15, 2009

The purpose of this paper is to give a simpler proof of a theorem of E.H. Brown [Bro59], that if $F \rightarrow E \rightarrow B$ is a fibre space, then there is a differential on the graded group $X=C(B) \otimes_{\Lambda} C(F)$ such that X with this differential is chain equivalent to to $C(E)$ (where $C(E)$ denotes the normalised singular chains of E over a ring Λ).

We work in the context of (semi-simplicial) twisted cartesian products (thus we assume as do the proofs of the theorem given in [Gug60, Shi62, Szc61] the results of [BGM59] on the relation between fibre spaces and twisted cartesian products). In fact we prove a general result on filtered chain complexes; this result applies to give proofs not only of Brown's theorem but also of a theorem of G. Hirsch, [Hir53]. Our proof is suggested by the formulae (1) of [Shi62, Ch. II, §1].

Let $(X, d),(Y, d)$ be chain complexes over a ring Λ. Let

$$
(Y, d) \xrightarrow{\nabla}(X, d) \xrightarrow{f}(Y, d)
$$

be chain maps and let $\Phi: X \rightarrow X$ be a chain homotopy such that
$f \nabla=1 ; \quad$ (1.2) $\quad \nabla f=1+d \Phi+\Phi d ;$
(1.3) $\quad f \Phi=0$;
(1.4) $\quad \Phi \nabla=0$;
(1.5) $\quad \Phi^{2}=0$;
(1.6) $\Phi d \Phi=-\Phi$.

Let X, Y have filtrations

$$
\begin{align*}
& 0=F^{-1} X \subseteq F^{0} X \subseteq \cdots \subseteq F^{p} X \subseteq F^{p+1} X \subseteq \cdots \tag{1}\\
& 0=F^{-1} Y \subseteq F^{0} Y \subseteq \cdots \subseteq F^{p} Y \subseteq F^{p+1} Y \subseteq \cdots \tag{2}
\end{align*}
$$

and let ∇, f, Φ all preserve these filtrations.
Example 1 Let B, F be (semi-simplicial) complexes, let $(X, d)=C(B \times F)$, the normalised chains of $B \times F$, let $(Y, d)=C(B) \otimes_{\Lambda} C(F)$, and let ∇, f, Φ be the natural maps of the Eilenberg-Zilber theorem as constructed explicitly in [EML53]. The relations (1.1)-(1.4) are proved in [EML53] while (1.5), (1.6) are easily proved (cf. [Shi62, p.114]). The filtrations on X, Y are induced by the filtration of B by its skeletons. The fact that ∇, f, Φ preserve filtrations is a consequence of naturality of these maps (cf. [Moo56, Ch. 5, p.13]).

We now wish to compare $C(B \times F)$ with $C\left(B \times_{\tau} F\right)$ where $B \times{ }_{\tau} F$ coincides with $B \times F$ as a complex except that ∂_{0} in $B \times_{\tau} F$ is given by

$$
\partial_{0}(b, x)=\left(\partial_{0} b, \tau(b, x)\right), \quad b \in B_{p}, x \in F_{p} .
$$

Then the filtered groups of $C(B \times F)$ and $C\left(B \times{ }_{\tau} F\right)$ coincide but the latter has a differential d^{τ}. If τ satisfies the normalisation condition

$$
\tau\left(s_{0} b^{\prime}, x\right)=\partial_{0} x, \quad b^{\prime} \in B_{p-1}, x \in F_{p}
$$

[^0]then $d^{\tau}-d$ lowers filtration in X.
Going back to the general case, we suppose X has another differential d^{τ} with the property
\[

$$
\begin{equation*}
\left(d^{\tau}-d\right) F^{p} X \subseteq F^{p-1} X, \quad p \geqslant 0 . \tag{3}
\end{equation*}
$$

\]

Our object is to construct a new differential $d^{\tau}=d_{Y}^{\tau}$ on Y and a chain equivalence $\left(Y, d^{\tau}\right) \rightarrow\left(X, d^{\tau}\right)$.
We first note that

$$
\begin{align*}
\Phi\left(1+d^{\tau} \Phi\right)^{r} & =\left(\Phi+\Phi d^{\tau} \Phi\right)\left(1+d^{\tau} \Phi\right)^{r-1} \\
& =\Phi\left(d^{\tau}-d\right) \Phi\left(1+d^{\tau} \Phi\right)^{r-1} \tag{1.6}\\
& =\Phi\left(d^{\tau}-d\right) \Phi \ldots \Phi\left(d^{\tau}-d\right) \Phi
\end{align*}
$$

so that (3) implies

$$
\begin{equation*}
\Phi\left(1+d^{\tau} \Phi\right)^{r} F^{p} X \subseteq F^{p-r} X \tag{4}
\end{equation*}
$$

But $F^{-1} X=0$; therefore the map

$$
\Phi^{\tau}=\sum_{r=0}^{\infty} \Phi\left(1+d^{\tau} \Phi\right)^{r}
$$

is well defined. Also from (1.3), (1.4), (1.5) we derive immediately

$$
\begin{equation*}
f \Phi^{\tau}=0, \tag{5.1}
\end{equation*}
$$

(5.2) $\quad \Phi^{\tau} \nabla=0$,
(5.3) $\quad\left(\Phi^{\tau}\right)^{2}=0$.

Next we must prove relations similar to (1.6). In fact we have

$$
\begin{equation*}
\Phi^{\tau} d^{\tau} \phi^{\tau}=-\Phi^{\tau}, \quad(6.2) \quad \Phi^{\tau} d^{\tau} \Phi=-\Phi \tag{6.1}
\end{equation*}
$$

These relations are proved by operating on the power series for Φ^{τ}; the operations are justified by (4) and the fact that $F^{-1} X=0$. For example, we prove (6.1):

$$
\begin{aligned}
\Phi^{\tau} d^{\tau} \phi^{\tau} & =\sum_{r, s=0}^{\infty} \Phi\left(1+d^{\tau} \Phi\right)^{r} d^{\tau} \Phi\left(1+d^{\tau} \Phi\right)^{s} \\
& =\sum_{r, s=0}^{\infty}\left(\Phi\left(1+d^{\tau} \Phi\right)^{r+s+1}-\Phi\left(1+d^{\tau} \Phi\right)^{r+s}\right) \\
& =\sum_{r=0}^{\infty}-\Phi\left(1+d^{\tau} \Phi\right)^{r} \\
& =-\Phi^{\tau}
\end{aligned}
$$

By (5.3) and (6.1) the deformation operator

$$
D^{\tau}=1+d^{\tau} \Phi^{\tau}+\Phi d^{\tau}: X \rightarrow X
$$

is idempotent. We set

$$
\begin{aligned}
\nabla^{\tau} & =D^{\tau} \nabla: Y \rightarrow X, \\
f^{\tau} & =f D^{\tau}: X \rightarrow Y, \\
d_{Y}^{\tau} & =f^{\tau} d^{\tau} \nabla^{\tau}: Y \rightarrow Y,
\end{aligned}
$$

and prove easily from (5.1), (5.2) and (6.1) respectively

$$
\begin{equation*}
\nabla^{\tau}=\left(1+\Phi^{\tau} d^{\tau}\right) \nabla \tag{7.1}
\end{equation*}
$$

$$
\text { (7.2) } \quad f^{\tau}=f\left(1+d^{\tau} \Phi^{\tau},\right.
$$

(7.3) $\quad d_{Y}^{\tau}=f\left(d^{\tau}+d^{\tau} \Phi^{\tau} d^{\tau}\right) \nabla=f^{\tau} d^{\tau} \nabla=f d^{\tau} \nabla^{\tau}$,
cf. [Shi62, Ch. II §1.]
The relations given so far are sufficient to prove in turn

$$
\begin{align*}
& \text { (8.1) } \quad f^{\tau} \nabla^{\tau}=1, \quad \text { (8.2) } \quad \nabla^{\tau} f^{\tau}=1+d^{\tau} \Phi^{\tau}+\Phi d^{\tau}, \\
& d_{y}^{\tau} f^{\tau}=f^{\tau} d^{\tau}, \quad \text { (8.4) } \quad \nabla^{\tau} d_{Y}^{\tau}=d^{\tau} \nabla^{\tau}, \quad \text { (8.5) } \quad\left(d_{Y}^{\tau}\right)^{2}=0 .
\end{align*}
$$

Thus $\nabla^{\tau}:\left(Y, d_{Y}^{\tau}\right) \rightarrow\left(X, d^{\tau}\right)$ is a chain equivalence of chain complexes.
In particular, the construction of d_{Y}^{τ} and ∇^{τ} applies to Example 1.
As another example, we obtain a generalised form of a theorem of G. Hirsch, [Hir53]:
Example 2 Let $X=C(B) \otimes_{\Lambda} C(F)$, let d^{τ} be the differential on X constructed as above from the twisted cartesian product $B \times_{\tau} F$. Let $Y=C(B) \otimes_{\Lambda} H(F)$ and let the homology $H(F)$ be such that the sequence

$$
0 \rightarrow B(F) \rightarrow Z(F) \rightarrow H(F) \rightarrow 0
$$

where $B(F), Z(F)$ denote the boundaries and cycles of $C(F)$, splits over Λ. This splitting may be used to define chain maps $\nabla^{\prime}: H(F) \rightarrow C(F), f^{\prime}: C(F) \rightarrow H(F)$ and a chain homotopy $\Phi^{\prime}: C(F) \rightarrow C(F)$ satisfying relations of the form (1.1) $-(1.6)(H(F)$ has of course the trivial differential). Let

$$
\nabla=1 \otimes \nabla^{\prime}, \quad f=1 \otimes f^{\prime}, \quad \Phi=1 \otimes \Phi^{\prime}
$$

Then ∇, f, Φ satisfy the relations (1.1) - (1.6). But on $X,\left(d^{\tau}-d\right) F^{p} X \subseteq F^{p-1} X, p 0$. So there is a differential d^{τ} on $Y=C(B) \otimes H(F)$ and a chain equivalence $\left(d_{Y}^{\tau}\right) \rightarrow\left(X, d_{X}^{\tau}\right)$. Composing this with the chain equivalence for Example 1 we obtain a chain equivalence

$$
\left(C(B) \otimes_{\Lambda} H(F), d^{\tau}\right) \rightarrow\left(C\left(B \times_{\tau} F\right), d^{\tau}\right)
$$

A Appendix ${ }^{1}$

As explained earlier, the above was written in 1964 for the conference in Sicily, and published in 1967. The result was found by trying to understand the paper [Shi62], and had been stimulated by earlier discussions and correspondence with M.G. Barratt. Later V.K. A. M. Gugenheim went through the same process and published the same argument in [Gug72]. This area has developed extensively, and is now called Homological Perturbation Theory, see for example [LS87, BL91], and many others. In conjunction with the theory of twisting cochains, it has proved an important theoretical and computational tool.

References

[BL91] Barnes, D. W. and Lambe, L. A. 'A fixed point approach to homological perturbation theory'. Proc. Amer. Math. Soc. 112 (3) (1991) 881-892. 3
[BGM59] Barratt, M. G., Gugenheim, V. K. A. M. and Moore, J. C. 'On semisimplicial fibre-bundles'. Amer. J. Math. 81 (1959) 639-657. 1
[Bro59] Brown, E. H., Jr. 'Twisted tensor products. I'. Ann. of Math. (2) 69 (1959) 223-246. 1
[Bro65] Brown, R. 'The twisted Eilenberg-Zilber theorem'. In 'Simposio di Topologia (Messina, 1964)', Edizioni Oderisi, Gubbio (1965), 33-37. 1
[EML53] Eilenberg, S. and Mac Lane, S. 'On the groups of $H(\Pi, n)$. I'. Ann. of Math. (2) 58 (1953) 55-106. 1

[^1][Gug60] Gugenheim, V. K. A. M. ‘On a theorem of E. H. Brown'. Illinois J. Math. 4 (1960) 292-311. 1
[Gug72] Gugenheim, V. K. A. M. 'On the chain-complex of a fibration'. Illinois J. Math. 16 (1972) 398-414. 3
[Hir53] Hirsch, G. 'Sur les groupes d'homologie des espaces fibrés'. Bull. Soc. Math. Belgique 6 (1953) 79-96 (1954). 1, 3
[LS87] Lambe, L. and Stasheff, J. 'Applications of perturbation theory to iterated fibrations'. Manuscripta Math. 58 (3) (1987) 363-376. 3
[Moo56] Moore, J. C. 'Algebraic homotopy theory' (1956). Princeton University. 1
[Shi62] Shih, W. 'Homologie des espaces fibrés'. Inst. Hautes Études Sci. Publ. Math. (13) (1962) 88. 1, 3
[Szc61] Szczarba, R. H. 'The homology of twisted cartesian products'. Trans. Amer. Math. Soc. 100 (1961) 197-216. 1

[^0]: *email: r.brown@bangor.ac.uk. This is a version in latex of [Bro65] with some extra comments. Current address: School of Computer Science, Bangor University, Gwynedd LL57 1UT, U.K. http://www.bangor.ac.uk/r.brown

[^1]: ${ }^{1}$ Written in April, 2009

